18-661: Introduction to ML for Engineers

Pytorch (and How We Got Here)

Spring 2022

Tianshu Huang, ECE - Carnegie Mellon University

Real Time 3D Scene Capture using NeRFs

Description NeRFs, or Neural Radiance Fields, are a method to create a 3D model of an object or scene by learning an implicit representation from a number of training images. Recent work has accelerated NeRF training from hours or even days down to seconds, which could potentially enable using NeRFs for real time scene capture.

Our objective is to explore the potential to use NeRFs for real time scene capture, which may involve modifying existing NeRF architectures, designing novel training pipelines, or integrating LIDAR-based volumetric video capture.

Skills Students should be proficient with Python. It will be helpful to have some exposure to CUDA and be familiar with deep learning frameworks.

Contact tianshu2@andrew.cmu.edu

- Deep Learning Hardware
- Deep Learning Frameworks
- Pytorch Tutorial
- Pytorch Example

- Deep Learning Hardware
- Deep Learning Frameworks
- Pytorch Tutorial
- Pytorch Example

Disclaimer: this lecture will not appear on your final exam, though some content, in particular PyTorch, will be used on Homework 7.

Deep Learning Hardware

Neural networks require lots of parallel computations, but CPUs require instructions to be executed sequentially.

How can we speed up computations?

- More cores: lots of overhead (Intel Xeon Phi, discontinued in 2020)
- More execution units, longer pipeline: requires sophisticated out-of-order execution, branch prediction, etc; doesn't scale
- SIMD instructions (AVX): you still carry around the baggage of the CPU architecture; can't easily make vectors huge

CPUs don't scale, and can only get you so far.

Graphics Cards: a card that connects to a display to show graphics.

Source: https://www.techpowerup.com/gpu-specs/nv1.c2015

Graphical Processing Units

Nvidia GeForce 256 "Transforming and Lighting engine": compute shaders — pretty much just SIMD code execution!

GeForce 256 (NV10) View of OpenGL

Source: https://www.techspot.com/article/650-history-of-the-gpu/. Slide from SIGGRAPH Asia 2008.

Nvidia and AMD embraced the "General Purpose GPU" paradigm for computer graphics:

- Organization of the GPU into Streaming Multiprocessors (SMs)
- "Nvidia realized that more cores running at a slower speed are more efficient for parallel workloads than fewer cores running at twice the frequency."

Source: https://www.techspot.com/article/659-history-of-the-gpu-part-4/

Modern GPU Architecture

Nvidia RTX A100: \approx \$30000; 108 SMs

Source: https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf

Streaming Multiprocessor

Construction Construction<	SM					
Liberature Liberature <thliberature< th=""> Liberature Liberatu</thliberature<>		L1 Instruc	tion Gache			
New Subsector 23 Prove Name Name <t< th=""><th>L0 Instruction C</th><th>ache</th><th>L0 Instruc</th><th>tion Cache</th></t<>	L0 Instruction C	ache	L0 Instruc	tion Cache		
Dought Dought<	Warp Scheduler (32 t	hread/clk)	Warp Schedule	r (32 thread/clk)		
	Dispatch Unit (32 th	read/clk)	Dispatch Unit	(32 thread/clk)		
101 102 104 1	Register File (16,38-	Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)				
NULL NULL NULL NULL NULL NULL NULL NULL	INT32 INT32 FP32 FP32 FP64		INT32 INT32 FP32 FP32 FF	G4		
1 1 <th>INT32 INT32 FP32 FP32 FP64</th> <th></th> <th>INT22 INT22 FP32 FP32 FP</th> <th>64</th>	INT32 INT32 FP32 FP32 FP64		INT22 INT22 FP32 FP32 FP	64		
N 10 100 100 100 100 100 100 100 100 100	INT32 INT32 FP32 FP32 FP64		INT32 INT32 FP32 FP32 FP	84		
1000000000000000000000000000000000000	INT32 INT32 FP32 FP32 FP64		INTERINTER FP32 FP32 FP	44		
1010 1010 102 102 102 103 104 103 104 103 104 104 104 1010 101 104 104 104 104 104 1010 101 104 104 104 104 1010 101 104 104 104 104 104 104 104 104	INT32 INT32 FP32 FP32 FP64	TENSOR CORE	INT32INT32 FP32 FP32 FP	154 TENSOR CORE		
N121101 N122 N12 N	INT32 INT32 FP32 FP32 FP64		INT32 INT32 FP32 FP32 FP	84		
No.2 000 00 000 000 000 000 000 000 000 00	INT32 INT32 FP32 FP32 FP64		INT32 INT32 FP32 FP32 FP	84		
U U	INT32 INT32 FP32 FP32 FP64		INT32 INT32 FP32 FP32 FP	54		
Bit States with Work (S) Marked NJ, States MJ, State MJ, States M	LD' LD' LD' LD' LD' LD' LD' ST ST ST ST ST ST	ST ST SFU	LDY LDY LDY LDY LDY ST ST ST ST ST	ST ST ST SFU		
Norp: Norp: <th< th=""><th>L0 Instruction C</th><th>ache</th><th>L0 Instruc</th><th>tion Cache</th></th<>	L0 Instruction C	ache	L0 Instruc	tion Cache		
Departs Departs <t< th=""><th>Warp Scheduler (32 t</th><th>hread/clk)</th><th colspan="3">Warp Scheduler (32 thread/clk)</th></t<>	Warp Scheduler (32 t	hread/clk)	Warp Scheduler (32 thread/clk)			
Regime File (15,34 x 2 k) Regime File (15,34 x 2 k) 013 010 020 020 0744 013 010 020 020 0744 013 010 020 020 0744 013 010 020 020 0744 013 010 020 020 0744 013 010 020 020 0744 013 010 020 020 0744 013 010 020 020 0744 013 010 020 020 0744 013 010 020 020 0744 013 010 020 020 0744 013 010 020 020 0744 013 010 020 020 0744 013 010 020 020 0744 013 010 020 020 0744 013 010 020 020 0744 010 010 010 010 010 010 010 010	Dispatch Unit (32 th	read/clk)	Dispatch Unit	(32 thread/clk)		
101 101 102 102 104 104 102 102 104 101 101 102 102 104 102 102 104 102 102 104 101 101 102 102 104 102 102 102 102 104 104 101 101 102 102 104 104 104 102 102 104 104 101 101 102 102 104 104 104 103 102 104 104 101 101 102 102 104 104 104 103 102 104 104 101 101 102 102 104 104 104 103 102 104 104 101 101 103 105 104 104 103 105 103 105 104 104 101 101 103 105 103 105 103 105 104 104 104 104 104 101 101 103 105 103 105 103 105 104 104 104 104 104 104 101 101 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104	Register File (16,38-	4 x 32-bit)	Register File (16,384 x 32-bit)		
Noisense	INT32 INT32 FP32 FP32 FP64		INT32 INT32 FP32 FP32 FP	64		
Nationality Note Product <	INT32 INT32 FP32 FP32 FP64		INT32 INT32 FP32 FP32 FP	64		
Maria Maria Maria	INT32 INT32 FP32 FP32 FP64		INTS2 INTS2 FP32 FP32 FP	üe 👘		
NIE AND NEE AND OPAL DESCRIPTION NIE AND <	INT32 INT32 FP32 FP32 FP64	TENOOD CODE	INTRA INTRA FP32 FP32 FF	TENEOR CORE		
ATTACH NO PO24 PO44 PO44	INT32 INT32 FP32 FP32 FP64	ILHJOR CORE	INT32 INT32 FP32 FP32 FP	84		
NT22 NT22 PF24 PF44 NT22 NT22 PF24 PF44 NT22 NT22 NT22 PF24 NT22 NT22 NT22 PF44 NT22 NT22 NT22 PF44 NT22 NT22 NT22 PF44 NT22 NT22 NT22 PF44	INT32 INT32 FP32 FP32 FP64		INT32 INT32 FP32 FP32 FP	84		
NT22 NT22 PD2 PD4 NT22 NT22 PD2 PD4 NT22 NT22 PD4 NT22 NT22 PD4	INT32 INT32 FP32 FP32 FP64		INT32INT32 FP32 FP32 FP	84		
LEP LEP LEP LEP LEP LEP LEP SFU st st st st st st st SFU	INT32 INT32 FP32 FP32 FP64		INT32 INT32 FP32 FP32 FP	84		
	ST ST ST ST ST ST ST	ST ST SFU	ST ST ST ST ST	ST ST ST SFU		
192KB L1 Data Cache / Shared Memory						
Tex Tex Tex Tex	Tex	Tex	Tex	Tex		

We are executing a dense layer with batch size 256 and 4096 hidden units $\implies 2^{20}$ parallel.

- 1. Spawn 2^{20} threads.
- 2. Split threads into 4096 blocks of 256 threads.
- 3. Each SM gets assigned a block, and divides it into 8 warps of 32 threads.
- These warps are sent to Warp Sechedulers that execute the instructions using 16 int32 units, 16 fp32 units, 8 fp64 units, and 1 tensor core.

Total data parallelism: 6912

Device	Current Price	Floating Point	Power (TDP)	
Nvidia A100 80GB	pprox \$30000	156 TFlops	400W	
Nvidia RTX A6000	pprox \$6000	38.7 TFlops	300W	
AMD EPYC 7713	pprox \$7000	4.1 TFlops	225W	
Nvidia RTX 3090	pprox \$2000	35.6 TFlops	350W	
Nvidia GTX 970	\$150 used	3.9 TFlops	150W	

Specs from https://www.techpowerup.com/. Prices reflect current market prices as of March 2022.

GPU vs CPU

Source: https://arxiv.org/pdf/1911.11313.pdf

More than just "More Cores"

Tensor Cores for 4x4 "Generalized Matrix Multiply": GEMM(A, B, C) = **AB** + **C**. For example, if we multiply 2 8x8 matrices:

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} = \begin{bmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{bmatrix},$$

where $A_{11}B_{11} + A_{12}B_{21} = \text{GEMM}(A_{11}, B_{11}, \text{GEMM}(A_{12}, B_{12}, 0)).$

More than just "More Cores"

Tensor Cores for 4x4 "Generalized Matrix Multiply": GEMM(A, B, C) = AB + C. For example, if we multiply 2 8x8 matrices:

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} = \begin{bmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{bmatrix},$$

where $A_{11}B_{11} + A_{12}B_{21} = \text{GEMM}(A_{11}, B_{11}, \text{GEMM}(A_{12}, B_{12}, 0)).$

Data Types specifically for deep learning:

	INPL	JT OPERANDS	AC	CUMULATOR	TOPS	X-factor vs. FFMA	SPARSE TOPS	SPARSE X-factor vs. FFMA
1400	FP32	(0	FP32		15.7	1x	-	
V100	FP16		FP32		125	8x	-	
	FP32	((())))))))))))))))))))))))))))))))))))	FP32		19.5	1x	-	
	TF32		FP32		156	8x	312	16x
	FP16	(000)00000	FP32		312	16x	624	32x
	BF16	(11111111111111111111111111111111111111	FP32		312	16x	624	32x
A100	FP16	((111))))))))))))))))))))))))))))))))))	FP16		312	16x	624	32x
	INT8		INT32		624	32x	1248	64x
	INT4		INT32	(11111111111111111111111111111111111111	1248	64x	2496	128x
	BINARY	0	INT32	(11111111111111111111111111111111111111	4992	256x	-	-
	IEEE FP64				19.5	1x	-	-

Source: https://jonathan-hui.medium.com/ai-chips-a100-gpu-with-nvidia-ampere-architecture-3034ed685e6e

A Typical Deep Learning Pipeline

- The CPU is usually used for data preprocessing only.
- All parameter and gradient computations take place on the GPU
- Data loading and preprocessing should be pipelined to avoid impacting runtime.

A Typical Deep Learning Machine

An Atypical Deep Learning Machine

Figure 2: Architecture diagram of a single training node.

We trained GPT-NeoX-20B on twelve Supermicro AS-4124GO-NART servers, each with eight NVIDIA A100-SXM4-40GB GPUs and configured with two AMD EPYC 7532 CPUs. All GPUs can directly access the InfiniBand switched fabric through one of four ConnectX-6 HCAs for GPUDirect RDMA. Two NVIDIA MQM8700-HS2R switches—connected by 16 links—compose the spine of this InfiniBand network, with one link per node CPU socket connected to each switch. Figure 2 shows a simplified overview of a node as configured for training.

AMD GPUs are not usually used, and for the most part cannot be used with deep learning frameworks!

- No hardware optimization for deep learning (Tensor Cores, ML-specific data types)
- No software support (CUDA, cuDNN, etc)
- Poor community adoption due to poor historical performance

Deep Learning Frameworks

What we used to do:

- LeNet, 1989: custom compiled code (most likely C or Fortran)
- AlexNet, 2012: custom CUDA code
- Early Deep Learning "Boom": early frameworks such as Caffe, Theano
- Recent deep learning: Tensorflow vs Pytorch

Tensorflow: the first "Modern" deep learning framework.

- \bullet (TF 1) Build, compile, then execute compute graph
- (TF 2) This is too annoying, let's add "eager execution" instead

Tensorflow: the first "Modern" deep learning framework.

- (TF 1) Build, compile, then execute compute graph
- (TF 2) This is too annoying, let's add "eager execution" instead

Pytorch: easier to use than tensorflow

- Optimize overhead for eager execution, and don't worry about compiling graphs
- ... Maybe we still want that performance of graph execution

Tensorflow: the first "Modern" deep learning framework.

- $\bullet~({\sf TF}~1)$ Build, compile, then execute compute graph
- (TF 2) This is too annoying, let's add "eager execution" instead

Pytorch: easier to use than tensorflow

- Optimize overhead for eager execution, and don't worry about compiling graphs
- ... Maybe we still want that performance of graph execution

JAX: built from the ground up to use a JIT approach

- Much more intuitive than Pytorch and Tensorflow
- New and not yet mature, missing a lot of tooling

• JAX: you work for Google, or have connections at Google.

- JAX: you work for Google, or have connections at Google.
- Tensorflow: you have TPUs or want to easily deploy your model using Tensorflow Lite.

- JAX: you work for Google, or have connections at Google.
- Tensorflow: you have TPUs or want to easily deploy your model using Tensorflow Lite.
- Pytorch: everyone else.

- JAX: you work for Google, or have connections at Google.
- Tensorflow: you have TPUs or want to easily deploy your model using Tensorflow Lite.
- Pytorch: everyone else.

... though if you use high level APIs such as Flax, Keras, torch.nn, there is little difference between the frameworks.

Pytorch

Three main components:

- GPU Computation (on torch.Tensor), which can use eager execution (default) or graph execution (torch.jit)
- Automatic Differentiation (torch.autograd)
- High level neural network API (torch.nn, torch.optim, torch.utils.data)

Plain Numpy

Numpy implementation of regression using a neural network with 2 layers, trained with Gradient Descent

5 N, D_in, H, D_out = 64, 1000, 100, 10

```
1 X = np.random.normal(size=(N, D in))
 2 y = np.random.normal(size=(N, D out))
 3 w1 = np.random.normal(size=(D in, H))
 4 w2 = np.random.normal(size=(H, D out))
 5 learning rate = 1e-6
 7 \text{ losses} = []
 8 for t in range(100):
       h = np.matmul(X, w1)
       h relu = np.maximum(h, 0)
       y pred = np.matmul(h relu, w2)
       loss = np.sum(np.square(y pred - y))
       grad y pred = 2 * (y \text{ pred} - y)
       grad w2 = np.matmul(h relu.T, grad y pred)
       grad h relu = np.matmul(grad y pred, w2.T)
       grad h = np.copy(grad h relu)
       grad h[h < 0] = 0
       grad w1 = np.matmul(X.T. grad h)
       w1 = w1 - learning rate * grad w1
       w2 = w2 - learning rate * grad w2
       losses.append(loss)
26 plt.plot(np.log(losses))
```

Plain Numpy

5 N, D in, H, D out = 64, 1000, 100, 10 L X = np.random.normal(size=(N, D in)) **Ordinary Arrays** y = np.random.normal(size=(N, D out)) on CPU w1 = np.random.normal(size=(D in, H)) 4 w2 = np.random.normal(size=(H, D out)) 5 learning rate = 1e-6 7 losses = [] 8 for t in range(100): h = np.matmul(X, w1)Forward Pass h relu = np.maximum(h, 0) y pred = np.matmul(h relu, w2) loss = np.sum(np.square(y pred - y) grad y pred = 2 * (y pred - y) Backward Pass grad w2 = np.matmul(h relu.T, grad y pred) grad h relu = np.matmul(grad v pred, w2.T) grad h = np.copy(grad h relu) grad h[h < 0] = 0 grad w1 = np.matmul(X.T, grad h) w1 = w1 - learning rate * grad w1 Parameter Update w2 = w2 - learning rate * grad w2losses.append(loss) 26 plt.plot(np.log(losses))

GPU Computation

Replace numpy with torch (with a few exceptions where the function names change)

```
1 device = torch.device('cuda')
2 print(device)
4 X = torch.randn(N, D in, device=device)
5 v = torch.randn(N. D out, device=device)
6 w1 = torch.randn(D in, H, device=device)
7 w2 = torch.randn(H, D out, device=device)
8 learning rate = 1e-6
10 losses = []
11 for t in range(100):
      h = torch.matmul(X, w1)
      h relu = torch.clamp(h, min=0)
      y pred = torch.matmul(h relu, w2)
      loss = torch.sum(torch.square(y pred - y))
      grad y pred = 2 * (y pred - y)
      grad w2 = torch.matmul(h relu.T, grad y pred)
      grad h relu = torch.matmul(grad v pred, w2.T)
      grad h = torch.clone(grad h relu)
      grad h[h < 0] = 0
      grad w1 = torch.matmul(X.T, grad h)
      w1 = w1 - learning rate * grad w1
      w2 = w2 - learning rate * grad w2
      losses.append(loss.cpu().numpy())
```

GPU Computation

CUDA = Nvidia GPU 🗕	1 device = torch.device 'cuda' 2 print(device)
Arrays sent to GPU	<pre>> X = torch.randn(N, D_in, device=device) y = torch.randn(N, D_out, device=device) w1 = torch.randn(D_in, H, device=device) w2 = torch.randn(H, D_out, device=device)</pre>
	8 learning_rate = 1e-6
	9 10 losses = []
	<pre>11 for t in range(100): 12 h = torch.matmul(X, w1)</pre>
	<pre>13 h_relu = torch.clamp(h, min=0) 14</pre>
	<pre>14 y_pred = torch.matmut(n_retu, w2) 15 loss = torch.sum(torch.square(y_pred - y))</pre>
	<pre>17 grad_y_pred = 2 * (y_pred - y) 18 grad_w2 = torch.matmul(h_relu.T, grad_y_pred)</pre>
	<pre>19 grad_h_relu = torch.matmul(grad_y_pred, w2.T) 20 mod htorch_place(srad_h_sralw)</pre>
	20 grad_n = torcn.clone(grad_n_relu) 21 grad_h[h < 0] = 0
	<pre>22 grad_w1 = torch.matmul(X.T, grad_h) 23</pre>
	23 24 w1 = w1 - learning_rate * grad_w1
Send the loss back	25 w2 = w2 - learning_rate * grad_w2
to the CPU	27 losses.append(loss.cpu().numpy())

Automatic Differentiation

Pytorch's Automatic Differentiation uses a "gradient tape" which records all operations made on tensors marked with requires_grad

```
1 device = torch.device('cuda')
 2 print(device)
4 X = torch.randn(N, D in, device=device)
5 v = torch.randn(N, D out, device=device)
6 w1 = torch.randn(D in, H, device=device, requires grad=True)
7 w2 = torch.randn(H, D out, device=device, requires grad=True)
8 learning rate = 1e-6
10 losses = []
11 for t in range(100):
      h = torch.matmul(X, w1)
      h relu = torch.clamp(h, min=0)
      y pred = torch.matmul(h relu, w2)
      loss = torch.sum(torch.square(v pred - v))
      loss.backward()
      with torch.no grad():
          w1 -= learning rate * w1.grad
          w2 -= learning rate * w2.grad
          w1.grad.zero ()
          w2.grad.zero ()
       losses.append(loss.detach().cpu().numpy())
```

Automatic Differentiation

Record gradients for the weights

... and it's like magic

Don't track gradients when updating params

Don't send gradient to CPU

```
1 device = torch.device('cuda')
 2 print(device)
4 X = torch.randn(N, D in, device=device)
5 y = torch.randn(N, D out, device=device)
6 w1 = torch.randn(D in, H, device=device, requires grad=True)
 7 w2 = torch.randn(H, D out, device=device, requires grad=True)
8 learning rate = 1e-6
10 \text{ losses} = [1]
11 for t in range(100):
      h = torch.matmul(X, w1)
      h relu = torch.clamp(h, min=0)
      y pred = torch.matmul(h relu, w2)
14
      loss = torch.sum(torch.square(y pred - y))
      loss.backward()
      with torch.no grad():
           w1 -= learning rate * w1.grad
           w2 -= learning_rate * w2.grad
           w1.grad.zero ()
           w2.grad.zero ()
      losses.append(loss.detach().cpu().numpy())
```

High Level API: torch.nn

Instead of manually constructing each layer, activation, initialization, etc, use pre-constructed layers

```
1 device = torch.device('cuda')
 2 print(device)
 4 X = torch.randn(N, D in, device=device)
 5 y = torch.randn(N, D out, device=device)
 6 learning rate = 1e-2
 8 model = torch.nn.Sequential(
      torch.nn.Linear(D in, H),
      torch.nn.ReLU(),
      torch.nn.Linear(H, D out)).to(device)
13 losses = []
14 for t in range(100):
      y pred = model(X)
      loss = torch.nn.functional.mse loss(y pred, y)
      loss.backward()
      with torch.no grad():
           for param in model.parameters():
               param -= learning rate * param.grad
      model.zero grad()
      losses.append(loss.detach().cpu().numpy())
```

High Level API: torch.nn

High Level API: torch.optim

Let's get rid of that last bit of handwritten training code

```
1 device = torch.device('cuda')
2 print(device)
4 X = torch.randn(N, D in, device=device)
5 y = torch.randn(N, D out, device=device)
6 learning rate = 1e-2
8 model = torch.nn.Sequential(
      torch.nn.Linear(D in, H),
      torch.nn.ReLU(),
      torch.nn.Linear(H, D out)).to(device)
12 optimizer = torch.optim.SGD(model.parameters(), lr=learning rate)
14 losses = []
15 for t in range(100):
      y \text{ pred} = \text{model}(X)
      loss = torch.nn.functional.mse loss(y pred, y)
      loss.backward()
      optimizer.step()
      optimizer.zero grad()
      losses.append(loss.detach().cpu().numpy())
24 plt.plot(np.log(losses))
```

High Level API: torch.utils.data

Use DataLoader to pipeline data loading and preprocessing

```
1 from torch.utils.data import TensorDataset, DataLoader
 3 device = torch.device('cuda')
4 print(device)
6 X = torch.randn(N, D in, device=device)
7 y = torch.randn(N, D out, device=device)
8 learning rate = 1e-2
10 loader = DataLoader(TensorDataset(X, y), batch size=16)
11 model = torch.nn.Sequential(
      torch.nn.Linear(D in, H),
      torch.nn.ReLU(),
      torch.nn.Linear(H, D out)).to(device)
15 optimizer = torch.optim.SGD(model.parameters(), lr=learning rate)
17 losses = []
18 for epoch in range(25):
      for x batch, v batch in loader:
19
          v pred = model(x batch)
          loss = torch.nn.functional.mse loss(v pred, v batch)
          loss.backward()
          optimizer.step()
          optimizer.zero grad()
          losses.append(loss.detach().cpu().numpy())
28 plt.plot(np.log(losses))
```

Pytorch Example

HW5 Release on Monday

• Start early!

Recitation:

- Deeper dive into the Pytorch Example
- Backpropagation Walkthrough
- Vectorization, Numerical Stability, and Debugging Tricks