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Advertisement

Real Time 3D Scene Capture using NeRFs

Description NeRFs, or Neural Radiance Fields, are a method to create a

3D model of an object or scene by learning an implicit representation

from a number of training images. Recent work has accelerated NeRF

training from hours or even days down to seconds, which could

potentially enable using NeRFs for real time scene capture.

Our objective is to explore the potential to use NeRFs for real time scene

capture, which may involve modifying existing NeRF architectures,

designing novel training pipelines, or integrating LIDAR-based volumetric

video capture.

Skills Students should be proficient with Python. It will be helpful to

have some exposure to CUDA and be familiar with deep learning

frameworks.

Contact tianshu2@andrew.cmu.edu
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Outline

• Deep Learning Hardware

• Deep Learning Frameworks

• Pytorch Tutorial

• Pytorch Example

Disclaimer: this lecture will not appear on your final exam, though some

content, in particular PyTorch, will be used on Homework 7.
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Deep Learning Hardware



The Problem with CPUs

Neural networks require lots of parallel computations, but CPUs require

instructions to be executed sequentially.

How can we speed up computations?

• More cores: lots of overhead (Intel Xeon Phi, discontinued in 2020)

• More execution units, longer pipeline: requires sophisticated

out-of-order execution, branch prediction, etc; doesn’t scale

• SIMD instructions (AVX): you still carry around the baggage of the

CPU architecture; can’t easily make vectors huge

CPUs don’t scale, and can only get you so far.
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Graphics Cards

Graphics Cards: a card that connects to a display to show graphics.

Source: https://www.techpowerup.com/gpu-specs/nv1.c2015
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Graphical Processing Units

Nvidia GeForce 256 “Transforming and Lighting engine”: compute

shaders — pretty much just SIMD code execution!

Source: https://www.techspot.com/article/650-history-of-the-gpu/. Slide from SIGGRAPH Asia 2008.
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General Purpose GPUs

Nvidia and AMD embraced the “General Purpose GPU” paradigm for

computer graphics:

• Organization of the GPU into Streaming Multiprocessors (SMs)

• “Nvidia realized that more cores running at a slower speed are more

efficient for parallel workloads than fewer cores running at twice the

frequency.”

Source: https://www.techspot.com/article/659-history-of-the-gpu-part-4/

6

https://www.techspot.com/article/659-history-of-the-gpu-part-4/


Modern GPU Architecture

Nvidia RTX A100: ≈ $30000; 108 SMs

Source: https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
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Streaming Multiprocessor

We are executing a dense layer with

batch size 256 and 4096 hidden

units =⇒ 220 parallel.

1. Spawn 220 threads.

2. Split threads into 4096 blocks of

256 threads.

3. Each SM gets assigned a block,

and divides it into 8 warps of 32

threads.

4. These warps are sent to Warp

Sechedulers that execute the

instructions using 16 int32 units,

16 fp32 units, 8 fp64 units, and 1

tensor core.

Total data parallelism: 6912
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GPU vs CPU

Device Current Price Floating Point Power (TDP)

Nvidia A100 80GB ≈ $30000 156 TFlops 400W

Nvidia RTX A6000 ≈ $6000 38.7 TFlops 300W

AMD EPYC 7713 ≈ $7000 4.1 TFlops 225W

Nvidia RTX 3090 ≈ $2000 35.6 TFlops 350W

Nvidia GTX 970 $150 used 3.9 TFlops 150W

Specs from https://www.techpowerup.com/. Prices reflect current market prices as of March 2022.
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GPU vs CPU

Source: https://arxiv.org/pdf/1911.11313.pdf
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More than just “More Cores”

Tensor Cores for 4x4 “Generalized Matrix Multiply”:

GEMM(A,B,C ) = AB+ C. For example, if we multiply 2 8x8 matrices:[
A11 A12

A21 A22

][
B11 B12

B21 B22

]
=

[
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

]
,

where A11B11 + A12B21 = GEMM(A11,B11,GEMM(A12,B12, 0)).

Data Types specifically for deep learning:

Source: https://jonathan-hui.medium.com/ai-chips-a100-gpu-with-nvidia-ampere-architecture-3034ed685e6e
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A Typical Deep Learning Pipeline

• The CPU is usually used

for data preprocessing

only.

• All parameter and

gradient computations

take place on the GPU

• Data loading and

preprocessing should be

pipelined to avoid

impacting runtime.
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A Typical Deep Learning Machine
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An Atypical Deep Learning Machine
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Aside: Why not AMD?

AMD GPUs are not usually used, and for the most part cannot be used

with deep learning frameworks!

• No hardware optimization for deep learning (Tensor Cores,

ML-specific data types)

• No software support (CUDA, cuDNN, etc)

• Poor community adoption due to poor historical performance
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Deep Learning Frameworks



Before Pytorch

What we used to do:

• LeNet, 1989: custom compiled code (most likely C or Fortran)

• AlexNet, 2012: custom CUDA code

• Early Deep Learning “Boom”: early frameworks such as Caffe,

Theano

• Recent deep learning: Tensorflow vs Pytorch
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Modern Frameworks

Tensorflow: the first “Modern” deep learning framework.

• (TF 1) Build, compile, then execute compute graph

• (TF 2) This is too annoying, let’s add “eager execution” instead

Pytorch: easier to use than tensorflow

• Optimize overhead for eager execution, and don’t worry about

compiling graphs

• ... Maybe we still want that performance of graph execution

JAX: built from the ground up to use a JIT approach

• Much more intuitive than Pytorch and Tensorflow

• New and not yet mature, missing a lot of tooling
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Choosing a Framework: Pytorch vs Tensorflow vs JAX

When to use...

• JAX: you work for Google, or have connections at Google.

• Tensorflow: you have TPUs or want to easily deploy your model

using Tensorflow Lite.

• Pytorch: everyone else.

... though if you use high level APIs such as Flax, Keras, torch.nn, there

is little difference between the frameworks.
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Pytorch



Pytorch

Three main components:

• GPU Computation (on torch.Tensor), which can use eager

execution (default) or graph execution (torch.jit)

• Automatic Differentiation (torch.autograd)

• High level neural network API (torch.nn, torch.optim,

torch.utils.data)
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Plain Numpy

Numpy implementation of regression

using a neural network with 2 layers,

trained with Gradient Descent
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Plain Numpy
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GPU Computation

Replace numpy with torch (with

a few exceptions where the

function names change)
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GPU Computation
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Automatic Differentiation

Pytorch’s Automatic

Differentiation uses a

“gradient tape”

which records all

operations made on

tensors marked with

requires grad
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Automatic Differentiation
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High Level API: torch.nn

Instead of manually

constructing each layer,

activation, initialization,

etc, use pre-constructed

layers
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High Level API: torch.nn
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High Level API: torch.optim

Let’s get rid of

that last bit of

handwritten

training code . . .
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High Level API: torch.utils.data

Use DataLoader to

pipeline data loading

and preprocessing
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Pytorch Example



Google Colab
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Recitation & HW5

HW5 Release on Monday

• Start early!

Recitation:

• Deeper dive into the Pytorch Example

• Backpropagation Walkthrough

• Vectorization, Numerical Stability, and Debugging Tricks
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