
18-661 Introduction to Machine Learning

Support Vector Machines (SVM) – I

Spring 2024



Announcements and Reminders

• Homework 2 due today!

• Homework 3 is posted and due Feb 23.

1



This Week: Support Vector Machines (SVM)

Today:

• (Linear) Support Vector Machines

• Max-margin and hinge loss formulations

Next Class:

• Duality

• Kernel Machines and the “Kernel Trick”
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Outline

1. Why SVM?

2. Max-Margin Formulation

3. Hinge Loss Formulation

4. Summary
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Why SVM?



Why Do We Need SVM?

Näıve Bayes (circa 1750):

• Pr(Y |x1 . . . xn) = Pr(Y )
∏n

i=1 Pr(xi |Y )

Logistic Regression (circa 1950):

• argminw −∑
i

(
yi log σ(wTxn) + (1− yn log(1− σ(wTx))

)
The problem (circa 1990):

• Logistic regression and Näıve Bayes train over the whole dataset.

• These can require a lot of memory in high-dimensional settings.

• Neither can be easily generalized to nonlinear settings.

Can we do better?
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Binary Logistic Regression

• We only need to know if p(x) > 0.5 or < 0.5.

• We don’t (always) need to know how far x is from this boundary.

How can we use this insight to improve the classification algorithm?

• What if we just looked at the boundary?

• Maybe then we could ignore some of the samples?
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SVM: Support Vector Machines

Work done by researchers at AT&T Bell Labs in the 1990s.

• Becomes the classifier of choice for many applications until

tree-based methods started gaining popularity in the early 2000s

• Still extremely popular today

We will see that SVM:

• Is less sensitive to outliers.

• Maximizes distance of training data from the boundary.

• Only requires a subset of the training points.

• Generalizes well to many nonlinear models.

• Scales better with high-dimensional data.
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Max-Margin Formulation



Binary Classification: Finding a Linear Decision Boundary

HH�

H��

• Input features x .

• Decision boundary is a hyperplane H : w⊤x + b = 0.
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Intuition: Where to Put the Decision Boundary?

• Consider a separable training dataset (e.g., with two features)

• There are an infinite number of decision boundaries

H : w⊤x + b = 0!

HH�

H��

• Which one should we pick?
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Intuition: Where to Put the Decision Boundary?

w·x+b=0

w·x+b=0

Find a decision boundary in the ‘middle’ of the two classes that:

• Perfectly classifies the training data

• Is as far away from every training point as possible

Let us apply this intuition to build a classifier that maximizes the margin

between training points and the decision boundary.
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First, Some Vector Geometry

What is a hyperplane?

w·x+b=0

w·x+b=0

• General equation is w⊤x + b = 0

• Divides the space in half, i.e., w⊤x + b > 0 and w⊤x + b < 0

• A hyperplane is a line in 2D and a plane in 3D

• w ∈ Rd is a non-zero normal vector
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Vector Norms and Inner Products

Given two vectors w and x, what is their inner product?

• Inner Product w⊤x = w1x1 + w2x2 + · · ·+ wdxd

0

w

x
θ

Inner Product w⊤x is also equal to ∥w∥ ∥x∥ cos θ.

• If w = x? θ = 0, so w⊤w = ∥w∥2.
• If w ⊥ x? θ = π/2, so wTx = 0.
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Normal Vector of a Hyperplane

a

w�x + b = 0

a0

w�

p

q

What is the meaning of w in the hyperplane wTx+ b = 0?
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Normal Vector of a Hyperplane

a

w�x + b = 0

a0

w�

p

q

Vector w is normal to the hyperplane. Why?

• If p and q are both on the line, then w⊤p + b = w⊤q + b = 0.

• Then w⊤(p − q) = w⊤p − w⊤q = −b − (−b) = 0

• p − q is an arbitrary vector parallel to the line, thus w is orthogonal

Let w∗ = w
∥w∥2

be the unit normal vector in the direction w.
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Distance from a Hyperplane

a

w�x + b = 0

a0

w�

p

q

How to find the distance from a to the hyperplane?

• We want to find distance between a and line in the direction of w∗.

• If we define point a0 on the line, then this distance corresponds to

length of a − a0 in direction of w∗, which equals w∗⊤(a − a0).

• We know w⊤a0 = −b since w⊤a0 + b = 0.

• Then the distance equals 1
∥w∥2

(w⊤a + b) .
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Distance from a Point to Decision Boundary

The unsigned distance from a point x to the decision boundary

(hyperplane) H is

dH(x) =
|w⊤x + b|

∥w∥2

How to remove the absolute value | · |?

Notation changes from Logistic Regression: Use y = +1 to represent

positive label and y = −1 for negative label.

Then, exploiting the fact that the decision boundary classifies every point

in the training dataset correctly, we have (w⊤x + b) and x ’s label y
must have the same sign. So we get

dH(x) =
y [w⊤x + b]

∥w∥2
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Defining the Margin

Margin: Smallest distance between the hyperplane and all training points

margin(w , b) = min
n

yn[w⊤xn + b]

∥w∥2

H : wTφ(x) + b = 0

|wTφ(x) + b|
�w�2

How can we use this to find the SVM solution?
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Optimizing the Margin

H : wTφ(x) + b = 0

|wTφ(x) + b|
�w�2

How should we pick (w , b) based on its margin?

We want a decision boundary that is as far away from all training points

as possible, so we to maximize the margin!

max
w ,b

(
min
n

yn[w⊤xn + b]

∥w∥2

)
= max

w ,b

(
1

∥w∥2
min
n

yn[w⊤xn + b]

)

Only involves points near the boundary (more on this later).

17



Optimizing the Margin

H : wTφ(x) + b = 0

|wTφ(x) + b|
�w�2

How should we pick (w , b) based on its margin?

We want a decision boundary that is as far away from all training points

as possible, so we to maximize the margin!

max
w ,b

(
min
n

yn[w⊤xn + b]

∥w∥2

)
= max

w ,b

(
1

∥w∥2
min
n

yn[w⊤xn + b]

)
Only involves points near the boundary (more on this later).

17



Scale of w

Margin: Smallest distance between the hyperplane and all training points

margin(w , b) = min
n

yn[w⊤xn + b]

∥w∥2

Consider three hyperplanes

(w , b) (2w , 2b) (.5w , .5b)

Which one has the largest margin?

• The margin doesn’t change if we scale (w , b) by a constant c

• w⊤x + b = 0 and (cw)⊤x + (cb) = 0: same decision boundary!

• Can we further constrain the problem so as to get a unique solution

(w , b)?
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Rescaled Margin

We can further constrain the problem by scaling (w , b) such that

min
n

yn[w⊤xn + b] = 1.

Note that there always exists a scaling for which this is true.

We’ve fixed

the numerator in the margin(w , b) equation, and we have:

margin(w , b) =
minn yn[w⊤xn + b]

∥w∥2
=

1

∥w∥2
Hence the points closest to the decision boundary are at distance 1

∥w∥2
.

H : wTφ(x) + b = 0

1

�w�2

wTφ(x) + b = 1

wTφ(x) + b = −1
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SVM: Max-margin Formulation for Separable Data

We thus want to solve:

max
w ,b

1

∥w∥2︸ ︷︷ ︸
margin

such that min
n

yn[w⊤xn + b] = 1︸ ︷︷ ︸
scaling of w , b

which is equivalent to

max
w ,b

1

∥w∥2
such that yn[w⊤xn + b] ≥ 1, ∀ n

This is further equivalent to

min
w ,b

1

2
∥w∥22

s.t. yn[w⊤xn + b] ≥ 1, ∀ n

Given our geometric intuition, SVM is called a max margin (or large

margin) classifier. The constraints are called large margin constraints.
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Support Vectors: A First Look

SVM formulation for separable data

min
w ,b

1

2
∥w∥22

s.t. yn[w⊤xn + b] ≥ 1, ∀ n

H : wTφ(x) + b = 0

1

�w�2

wTφ(x) + b = 1

wTφ(x) + b = −1

Two types of training data, based on the situations of the constraint:

• “=”: yn[w⊤xn + b] = 1. These training data points are called

“support vectors”, which have the minimum distance ( 1
∥w∥ ) to the

boundary.

• “>”: yn[w⊤xn + b] > 1. Distance to the boundary is larger than

the minimum. Removing these data points does not affect the

optimal solution (more on this next lecture).
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SVM for Non-separable Data

SVM formulation for separable data

min
w ,b

1

2
∥w∥22

s.t. yn[w⊤xn + b] ≥ 1, ∀ n

Non-separable setting
In practice our training data may not be separable. What issues arise

with the optimization problem above when data is not separable?

• For every w there exists a training point x i such that

yi [w⊤x i + b] ≤ 0

• There is no feasible (w , b) as at least one of our constraints is

violated!
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SVM for Non-separable Data

Constraints in separable setting

yn[w⊤xn + b] ≥ 1, ∀ n

Constraints in non-separable setting
Can we modify our constraints to account for non-separability?

Specifically, we introduce slack variables ξn ≥ 0:

yn[w⊤xn + b] ≥ 1− ξn, ∀ n

• For “hard” training points, we can increase ξn until the above

inequalities are met.

• What does it mean when ξn = 0? This data point is correctly

classified.

• What does it mean when ξn is very large? We have violated the

original constraints “by a lot.”
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Soft-margin SVM Formulation

We do not want ξn to grow too large, and we can control their size by

incorporating them into our optimization problem:

min
w ,b,ξ

1

2
∥w∥22 + C

∑
n

ξn

s.t. yn[w⊤xn + b] ≥ 1− ξn, ∀ n

ξn ≥ 0, ∀ n

What is the role of C?

• User-defined hyperparameter

• Trades off between the two terms in our objective

• Same idea as the regularization term in ridge regression
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How to Solve this Problem?

min
w ,b,ξ

1

2
∥w∥22 + C

∑
n

ξn

s.t. yn[w⊤xn + b] ≥ 1− ξn, ∀ n

ξn ≥ 0, ∀ n

• This is a convex quadratic program: the objective function is

quadratic in w and linear in ξ and the constraints are linear

(inequality) constraints in w , b and ξn.

• Early solvers were based on general-purpose quadratic program

solvers (e.g. similar to scipy.optimize or Matlab’s quadprog(),

albeit in the 1990s)

• SVM solvers today are based on highly optimized search algorithms

that exploit SVM-specific structure.
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Support Vectors: Revisited

H : wT�(x) + b = 0

wT�(x) + b = 1

wT�(x) + b = �1

⇠n = 0

⇠n < 1
⇠n > 1

Support vectors are highlighted by the dotted orange lines. What does

this mean mathematically?
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Support Vectors: Revisited

H : wT�(x) + b = 0

wT�(x) + b = 1

wT�(x) + b = �1

⇠n = 0

⇠n < 1
⇠n > 1

Recall the constraints yn[w⊤xn + b] ≥ 1− ξn from the soft-margin

formulation. All the training points (xn, yn) that satisfies the constraint

with “=” are support vectors.
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Support Vectors: Revisited

H : wT�(x) + b = 0

wT�(x) + b = 1

wT�(x) + b = �1

⇠n = 0

⇠n < 1
⇠n > 1

In other words, support vectors satisfy yn[w⊤xn + b] = 1− ξn , which

can be further divided into several categories:

• ξn = 0: yn[w⊤xn + b] = 1, the point is on the correct side with

distance 1
∥w∥ .

• 0 < ξn ≤ 1: yn[w⊤xn + b] ∈ [0, 1) on the correct side, but with

distance less than 1
∥w∥ .

• ξn > 1: yn[w⊤xn + b] < 0, on the wrong side of the boundary.
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Example of SVM

0 x1

x2

1 2 3 4 5

y = 1y = -1

What will be the decision boundary learnt by solving the SVM

optimization problem?
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Example of SVM

0 x1

x2

1 2 3 4 5

x1 -2.5 = 0 y = 1y = -1

Margin = 1.5; the decision boundary has w = [1, 0]⊤, and b = −2.5.

Not quite: we need the support vectors to satisfy to yn(w⊤xn + b) = 1.

For example, for xn = [1, 0]⊤, we have

yn(w
⊤xn + b) = (−1)[1− 2.5] = 1.5.
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Example of SVM: Scaling

0 x1

x2

1 2 3 4 5

y = 1y = -1 (2x1-5)/3 = 0

Thus, our optimization problem will re-scale w and b to get this equation

for the same decision boundary.

Margin = 1.5; the decision boundary has w = [2/3, 0]⊤, and b = −5/3.

For example, for xn = [1, 0]⊤, we have

yn(w
⊤xn + b) = (−1)[2/3− 5/3] = 1.
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Example of SVM: Support Vectors

0 x1

x2

1 2 3 4 5

y = 1y = -1 (2x1-5)/3 = 0

The solution to our optimization problem will be the same to the

reduced dataset containing all the support vectors.
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Example of SVM: Support Vectors

0 x11 2 3 4 5

y = 1y = -1 (2x1-5)/3 = 0

There can be many more data than the number of support vectors (so we

can train on a smaller dataset).
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Example of SVM: Resilience to Outliers

0

x2

1 2 3 4 5

y = 1y = -1

• Still linearly separable, but one of the orange dots is an “outlier”.
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Example of SVM: Resilience to Outliers

0 x1

x2

1 2 3 4 5

y = 1y = -1

• Naively applying the hard-margin SVM will result in a classifier with

small margin.

• So, better to use the soft-margin (or equivalently, hinge loss)

formulation.
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Example of SVM: Resilience to Outliers

0 x1

x2

1 2 3 4 5

y = 1y = -1

0 x1

x2

1 2 3 4 5

y = 1y = -1

⇠n

min
w ,b,ξ

1

2
∥w∥22 + C

∑
n

ξn

s.t. yn[w⊤xn + b] ≥ 1− ξn, ∀ n

ξn ≥ 0, ∀ n

Due to the flexibility provided by C , (properly tuned) SVM is less

sensitive to outliers.
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Example of SVM: Resilience to Outliers

0 x1

x2

1 2 3 4 5

y = 1y = -1

0 x1

x2

1 2 3 4 5

y = 1y = -1

⇠n

min
w ,b,ξ

1

2
∥w∥22 + C

∑
n

ξn

s.t. yn[w⊤xn + b] ≥ 1− ξn, ∀ n

ξn ≥ 0, ∀ n

• What happens if C is very small?

More data points near the

boundary are disregarded.

• What happens if C is 0? All data points will be ignored.
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• What happens if C is very large?

Outliers near the decision

boundary will have a greater impact.

• What happens if C is ∞? We get hard margin SVM.
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Hinge Loss Formulation



SVM vs. Logistic Regression

SVM soft-margin formulation

min
w ,b,ξ

1

2
∥w∥22 + C

∑
n

ξn

s.t. yn[w⊤xn + b] ≥ 1− ξn, ∀ n

ξn ≥ 0, ∀ n

Logistic regression formulation

min
w

−
∑
n

{yn log σ(w⊤xn)

+ (1− yn) log[1− σ(w⊤xn)]}

+
λ

2
∥w∥22

• Logistic regression defines a loss for each data point and minimizes

the total loss plus a regularization term.

• This is convenient for assessing the “goodness” of the model on

each data point.

• Can we write SVMs in this form as well? The Hinge Loss

formulation!
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Derive the Hinge Loss Formulation

Here’s the soft-margin formulation again:

min
w ,b,ξ

1

2
∥w∥22 + C

∑
n

ξn s.t. yn[w⊤xn + b] ≥ 1− ξn, ξn ≥ 0, ∀ n

Now since yn[w⊤xn + b] ≥ 1− ξn ⇐⇒ ξn ≥ 1− yn[w⊤xn + b]:

min
w ,b,ξ

C
∑
n

ξn +
1

2
∥w∥22 s.t. ξn ≥ max(0, 1− yn[w⊤xn + b]), ∀ n

Now since the ξn should always be as small as possible, we obtain:

min
w ,b

C
∑
n

max(0, 1− yn[w⊤xn + b]) +
1

2
∥w∥22

Divide by C and set λ = 1
C , we get get Hinge Loss formulation:

min
w ,b

∑
n

max(0, 1− yn[w⊤xn + b])︸ ︷︷ ︸
Hinge Loss for xn,yn

+
λ

2
∥w∥22
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min
w ,b,ξ

C
∑
n

ξn +
1

2
∥w∥22 s.t. ξn ≥ max(0, 1− yn[w⊤xn + b]), ∀ n

Now since the ξn should always be as small as possible, we obtain:

min
w ,b

C
∑
n

max(0, 1− yn[w⊤xn + b]) +
1

2
∥w∥22

Divide by C and set λ = 1
C , we get get Hinge Loss formulation:

min
w ,b

∑
n

max(0, 1− yn[w⊤xn + b])︸ ︷︷ ︸
Hinge Loss for xn,yn

+
λ

2
∥w∥22
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Logistic Regression Loss vs Hinge Loss

Given training data (xn, yn), the cross entropy loss was

−{yn log σ(w⊤xn) + (1− yn) log[1− σ(w⊤xn)]}

• What does the Hinge Loss Function look like?
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Logistic Regression Loss vs Hinge Loss

Given training data (xn, yn), the Hinge loss is

max(0, 1− yn[w⊤xn + b])

• Loss grows linearly as we move away from the boundary.

• No penalty if a point is more than 1 unit from the boundary.
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Hinge Loss SVM Formulation

Minimizing the total hinge loss on all the training data

min
w ,b

∑
n

max(0, 1− yn[w⊤xn + b])︸ ︷︷ ︸
hinge loss for sample n

+
λ

2
∥w∥22︸ ︷︷ ︸

regularizer

Analogous to regularized least squares or logistic regression, as we

balance between two terms (the loss and the regularizer).

• Can solve using gradient descent to get the optimal w and b

• Gradient of the first term will be either 0, xn or −xn depending on

yn and w⊤xn + b.

• Much easier to compute than in logistic regression, where we need

to compute the sigmoid function σ(w⊤xn + b) in each iteration.
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Summary



Three SVM Formulations

Hard-margin (for separable data)

min
w ,b,ξ

1

2
∥w∥22 s.t. yn[w⊤xn + b] ≥ 1, ξn ≥ 0, ∀ n

Soft-margin (add slack variables)

min
w ,b,ξ

1

2
∥w∥22 + C

∑
n

ξn s.t. yn[w⊤xn + b] ≥ 1− ξn, ξn ≥ 0, ∀ n

Hinge loss (define a loss function for each data point)

min
w ,b

∑
n

max(0, 1− yn[w⊤xn + b]) +
λ

2
∥w∥22
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Advantages of SVM

We’ve seen the geometric formulation of SVM and the equivalent

formulation of minimizing the empirical hinge loss.

This explains why SVM:

1. Is less sensitive to outliers.

2. Maximizes distance of training data from the boundary.

3. Only requires a subset of the training points.

4. Generalizes well to many nonlinear models.

5. Scales better with high-dimensional data.

We will need to use duality to show the remaining properties.
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Summary

You should know:

• Max-margin formulation for separable and non-separable SVMs.

• Definition and importance of support vectors.

• Hinge loss formulation of SVMs.

• Equivalence of the max-margin and hinge loss formulations.

Next class:

• Duality

• Nonlinear SVM
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