18-661 Introduction to Machine Learning
Support Vector Machines (SVM) — |

Spring 2024



Announcements and Reminders

e Homework 2 due today!

e Homework 3 is posted and due Feb 23.



This Week: Support Vector Machines (SVM)

Today:

o (Linear) Support Vector Machines

e Max-margin and hinge loss formulations
Next Class:

e Duality

e Kernel Machines and the “Kernel Trick”



1. Why SVM?
2. Max-Margin Formulation
3. Hinge Loss Formulation

4. Summary
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Why Do We Need SVM?

Nalve Bayes (circa 1750):

o Pr(Y|xi...xp) = Pr(Y) [, Pr(x|Y)
Logistic Regression (circa 1950):

e argminy, — >, (yiloga(w'x,) + (1 — y,log(l — o(w'x)))
The problem (circa 1990):

e Logistic regression and Naive Bayes train over the whole dataset.
e These can require a lot of memory in high-dimensional settings.

e Neither can be easily generalized to nonlinear settings.

Can we do better?



Binary Logistic Regression

Y =Dy + DX 4= Lincar Model

p Logistic Model 2
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e We only need to know if p(x) > 0.5 or < 0.5.

e We don't (always) need to know how far x is from this boundary.
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e We only need to know if p(x) > 0.5 or < 0.5.

e We don't (always) need to know how far x is from this boundary.

How can we use this insight to improve the classification algorithm?
e What if we just looked at the boundary?

e Maybe then we could ignore some of the samples?



SVM: Support Vector Machines

Work done by researchers at AT&T Bell Labs in the 1990s.

e Becomes the classifier of choice for many applications until
tree-based methods started gaining popularity in the early 2000s

e Still extremely popular today



SVM: Support Vector Machines

Work done by researchers at AT&T Bell Labs in the 1990s.

e Becomes the classifier of choice for many applications until
tree-based methods started gaining popularity in the early 2000s

e Still extremely popular today

We will see that SVM:

Is less sensitive to outliers.

Maximizes distance of training data from the boundary.

Only requires a subset of the training points.

Generalizes well to many nonlinear models.

Scales better with high-dimensional data.



Max-Margin Formulation



Binary Classification: Finding a Linear Decision Boundary

e Input features x.

e Decision boundary is a hyperplane H : w'x + b =0.



Intuition: Where to Put the Decision Boundary?

e Consider a separable training dataset (e.g., with two features)

e There are an infinite number of decision boundaries
H:-wlx+b=0!

e Which one should we pick?
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Intuition: Where to Put the Decision Boundary?

Find a decision boundary in the ‘middle’ of the two classes that:

e Perfectly classifies the training data
e Is as far away from every training point as possible
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Intuition: Where to Put the Decision Boundary?

. v;f-x—i—b:O

Find a decision boundary in the ‘middle’ of the two classes that:

e Perfectly classifies the training data
e Is as far away from every training point as possible

Let us apply this intuition to build a classifier that maximizes the margin
between training points and the decision boundary.



First, Some Vector Geometry

What is a hyperplane?

w-x+b=0
v wex+b=0
e General equationis w x4+ b =0

e Divides the space in half, ie., w x4+ b>0and w'x+ b <0
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First, Some Vector Geometry

What is a hyperplane?

w-x+b=0 .
v w-x+b=0

General equationis w'x+b=0

Divides the space in half, i.e, w x4+ b>0and w'x+ b <0

A hyperplane is a line in 2D and a plane in 3D

w € R9 is a non-zero normal vector

10



Vector Norms and Inner Products

Given two vectors w and x, what is their inner product?

e Inner Product w'x = wyxy + woxo + - - - + Wyxy
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Vector Norms and Inner Products

Given two vectors w and x, what is their inner product?

e Inner Product w'x = wyxy + woxo + - - - + Wyxy
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Inner Product w " x is also equal t§ ||w/||}|x|| cosd.
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Vector Norms and Inner Products

Given two vectors w and x, what is their inner product?

e Inner Product w'x = wyxy + woxo + - - - + Wyxy

Inner Product w"x is also equal to ||w/|| ||x]| cos .

T

o If w=x? =0 sow' w=|wl|?2

o Ifw_L x? 0 =mn/2, sow! x=0.

11



Normal Vector of a Hyperplane

~

What is the meaning of w in the hyperplane w’x + b = 0?
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Normal Vector of a Hyperplane
\ J

Vector w is normal to the hyperplane. Why?
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e If p and g are both on the line, then w ' p+b=w"q+ b=0.
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e If p and g are both on the line, then w ' p+b=w"q+ b=0.
e Thenw'(p—q)=w'p—-wlg=-b—(-b)=0

e p — q is an arbitrary vector parallel to the line, thus w is orthogonal
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Normal Vector of a Hyperplane

~

Vector w is normal to the hyperplane. Why?
e If p and g are both on the line, then w ' p+b=w"q+ b=0.
e Thenw'(p—q)=w'p—-wlg=-b—(-b)=0

e p — q is an arbitrary vector parallel to the line, thus w is orthogonal

Let w* = ”l:',’“z be the unit normal vector in the direction w.

13



Distance from a Hyperplane
\ J

How to find the distance from a to the hyperplane?

e We want to find distance between a and line in the direction of w*.
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Distance from a Hyperplane
\ S

How to find the distance from a to the hyperplane?
e We want to find distance between a and line in the direction of w*.
e |If we define point ag on the line, then this distance corresponds to

*T(

length of @ — ag in direction of w*, which equals w* ' (a — ap).
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Distance from a Hyperplane
\ S

How to find the distance from a to the hyperplane?
e We want to find distance between a and line in the direction of w*.

e |If we define point ag on the line, then this distance corresponds to
length of a — ag in direction of w*, which equals w* ' (a — ag).

e We know w'ag = —b since w'ag + b =0.

14



Distance from a Hyperplane
\ J

How to find the distance from a to the hyperplane?

e We want to find distance between a and line in the direction of w*.

e |If we define point ag on the line, then this distangs, corresponds to
length of @ — ag in direction of w*, which eqan

\ (a — ag)-
We know w ' ag = —b since
————

e Then the distance equals,

14



Distance from a Point to Decision Boundary

The unsigned distance from a point x to the decision boundary
(hyperplane) H is
_|wTx + b

) = T,
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Distance from a Point to Decision Boundary

The unsigned distance from a point x to the decision boundary

hyperplane) H is
(hyperplane) wTxt b WS
dy(x) = ——— +
-— . .>

How to remove the absolute value | - |? . -
C
G
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Distance from a Point to Decision Boundary

The unsigned distance from a point x to the decision boundary
(hyperplane) H is
_|wTx + b

) = T,

How to remove the absolute value | - |?

Notation changes from Logistic Regression: Use y = +1 to represent
positive label and y = —1 for negative label.

15



Distance from a Point to Decision Boundary

The unsigned distance from a point x to the decision boundary

(hyperplane) H is
_|wTx + b

) = T,

How to remove the absolute value | - |?

Notation changes from Logistic Regression: Use y = +1 to represent
positive label and y = —1 for negative label.

Then, exploiting the fact that the decision boundary classifies every point
in the training dataset correctly, we have (w ' x + b) and x's label y
must have the same sign. So we get

~ ylwTx+b]

) =TT,

15



Defining the Margin

Margin: Smallest distance between the hyperplane and all training points

MARGIN(w, b) = min ————————
n [[wll2

llwll2

How can we use this to find the SVM solution?

16



Optimizing the Margin

|wT () +b|
[lw]l2

How should we pick (w, b) based on its margin?

We want a decision boundary that is as far away from all training points
as possible, so we to maximize the margin!

-
b 1
max (min yn[wx,,—|—]> = max ( mm yolw " x, + b])
LT s W\ Twl
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Optimizing the Margin

|wT () +b|
[lw]l2

How should we pick (w, b) based on its margin?

We want a decision boundary that is as far away from all training points
as possible, so we to maximize the margin!

o M) 5 (o il o 81

wib \ [[wll2

Only involves points near the boundary (more on this later).

17



Margin: Smallest distance between the hyperplane and all training points

MARGIN(w, b) = min
n [[wll2

Consider three hyperplanes
(w,b) (2w,2b) (.5w,.5b)

Which one has the largest margin?
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Margin: Smallest distance between the hyperplane and all training points

MARGIN(w, b) = min
n [[wll2

Consider three hyperplanes
(w,b) (2w,2b) (.5w,.5b)

Which one has the largest margin?

e The MARGIN doesn't change if we scale (w, b) by a constant ¢

e w'x+b=0and (cw)"x + (cb) = 0: same decision boundary!
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Margin: Smallest distance between the hyperplane and all training points

MARGIN(w, b) = min
n [[wll2

Consider three hyperplanes
(w,b) (2w,2b) (.5w,.5b)

Which one has the largest margin?

e The MARGIN doesn't change if we scale (w, b) by a constant ¢
e w'x+b=0and (cw)"x + (cb) = 0: same decision boundary!

e Can we further constrain the problem so as to get a unique solution
(w, b)?

18



Rescaled Margin

We can further constrain the problem by scaling (w, b) such that
min y,[w ' x, + b] = 1.

Note that there always exists a scaling for which this is true.

19



Rescaled Margin

We can further constrain the problem by scaling (w, b) such that
min y,[w ' x, + b] = 1.
n
Note that there always exists a scaling for which this is true. We've fixed
the numerator in the MARGIN b) equation, and we have:
s [ T bh 1
MARGIN(w, b) minn ya[W xn +

[[wll2

—
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Rescaled Margin

We can further constrain the problem by scaling (w, b) such that
min y,[w ' x, + b] = 1.

Note that there always exists a scaling for which this is true. We've fixed
the numerator in the MARGIN(w, b) equation, and we have:

i T b 1
MARGIN(w, b) = ming yalw X, £ 8] _
w2 [wll2
Hence the points closest to the decision boundary are at distance Wil
Woerb >
H:w p(z)+b=0
WAL by 20 e
2

19



SVM: Max-margin Formulation for Separable Data

We thus want to solve:

max ——  such that miny,[w'x, 4+ b] =1
wb [[wl n
S~ )
margin scaling of w, b
which is equivalent to "" M:\ F” =1 & U“’" f/l Z1
max such that y,,[wa,, +b>1, ¥V n
wb |[wl

20



SVM: Max-margin Formulation for Separable Data

We thus want to solve:

1
max ——  such that min y,,[wa,7 +b =1
wb [[wll n
~ -
margin scaling of w, b

which is equivalent to

1

max ——  such that y,,[wa,,+b] >1, V n
wb [wl

This is further equivalent to

N I
min - Slwl

s.t. y,,[wa,,er]zl, vV n

Given our geometric intuition, SVM is called a max margin (or large
margin) classifier. The constraints are called large margin constraints.

20



Support Vectors: A First Look

wg(@) +b=1
.

SVM formulation for separable data -
H:w p(x)+b=0

1,
min > lwl3

st yalw'x,+b]>1, V n D S

21



Support Vectors: A First Look

SVM formulation for separable data W +h=1

1,
min > lwl3

st yalw'x, +H>1) ¥V n D S

Two types of training data, based on the situations of the constraint:

i“

e "=": y,[w'x,+ b] = 1. These training data points are called
“support vectors”, which have the minimum distance (H H) to the
boundary.

H:w p(x)+b=0
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Support Vectors: A First Look

Ta;y;) +b=1

SVM formulation for separable data
H:wTe(x) +b=0

("‘\M

Two types of training data, based on the situations of the constraint:

“=": ya[wTx, + b] = 1. These training data points are called

[ ] = .
“support vectors”, which have the minimum distance (H H) to the
boundary.

o “>": y,[w'x,+ b] > 1. Distance to the boundary is larger than

the minimum. Removing these data points does not affect the

optimal solution (more on this next lecture).
21



SVM for Non-separable Data

SVM formulation for separable data

R R
min 5 llwl:

st yaw'x,+b]>1, ¥ n

Non-separable setting
In practice our training data may not be separable. What issues arise

with the optimization problem above when data is not separable?

22



SVM for Non-separable Data

SVM formulation for separable data

R R
min 5 llwl:

st yaw'x,+b]>1, ¥ n

Non-separable setting _ _
In practice our training data may not be separable. What issues arise
with the optimization problem above when data is not separable?

e For every w there exists a training point x; such that

y,-[wa,- +b<0
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SVM for Non-separable Data

SVM formulation for separable data

R R
min 5 llwl:

st yaw'x,+b]>1, ¥ n

Non-separable setting
In practice our training data may not be separable. What issues arise
with the optimization problem above when data is not separable?
e For every w there exists a training point x; such that
T
yilw ' x; + b] <0
e There is no feasible (w, b) as at least one of our constraints is

violated!

22



SVM for Non-separable Data

Constraints in separable setting
Yolw x,+b]>1, ¥V n

Constraints in non-separable setting
Can we modify our constraints to account for non-separability?
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SVM for Non-separable Data

Constraints in separable setting )
Yolw x,4+b]>1, ¥V n |
——~

[

Constraints in non-separable setting €

Can we modify our constraints to accoynt for non-separability? [ ]
)

Specifically, we introduce slack variabl @)2 0: ' :'g
T
}/n[w Xn+b]21_£na vV on
——dcd ' _
(way. W"x.*Q)
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SVM for Non-separable Data

Constraints in separable setting
Yolw x,+b]>1, ¥V n

Constraints in non-separable setting
Can we modify our constraints to account for non-separability?
Specifically, we introduce slack variables &, > 0:

Yn[WTXn+b] >1-&, V n

e For “hard” training points, we can increase &, until the above
inequalities are met.
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e What does it mean when &, = 07 This data point is correctly
classified.
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SVM for Non-separable Data

Constraints in separable setting
Yolw x,+b]>1, ¥V n

Constraints in non-separable setting
Can we modify our constraints to account for non-separability?

Specifically, we introduce slack variables &, > 0:
}/n[WTXn + b] >1- éna YV n

e For “hard” training points, we can increase &, until the above
inequalities are met.

e What does it mean when &, = 07 This data point is correctly
classified.

e What does it mean when &, is very large?
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SVM for Non-separable Data

Constraints in separable setting

yn[wa,, +b]>1, ¥V n '
("l b ‘

Constraints in non-separable setting
Can we modify our constraints to account for non-separability?

Specifically, we introduce slack variables &, > 0: r]
}/n[WTXn + b] >1- gna YV n

e For “hard” training points, we can increase &, until the above
inequalities are met.

e What does it mean when &, = 07 This data point is correctly
classified.

e What does it mean when &, is very large? We have violated the

original constraints “by a lot.”

23



Soft-margin SVM Formulation

We do not want &, to grow too large, and we can control their size by

incorporating them into our optimization problem:
\Vy ?\

N .
min §IIWH2+CZH:€n

st. yalw x,+b]>1—-¢&,, V n
§n >0, Vn

24



Soft-margin SVM Formulation

We do not want &, to grow too large, and we can control their size by
incorporating them into our optimization problem:

1
min g IwlE+C3 6

s.t. Yn[WTXn+b] > ]_,é'm vV on
£, >0, ¥Vn

What is the role of C?
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Soft-margin SVM Formulation

We do not want &, to grow too large, and we can control their size by
incorporating them into our optimization problem:

) 1 5
i Y
s.t. y,,[wa,,er] >1-&, V n
£, >0, ¥Vn

What is the role of C?

e User-defined hyperparameter
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Soft-margin SVM Formulation

We do not want &, to grow too large, and we can control their size by
incorporating them into our optimization problem:

. 1 5
W LIRS I
s.t. y,,[wa,, +b>1-¢&, ¥V n
§n >0, Vn
What is the role of C?

e User-defined hyperparameter
e Trades off between the two terms in our objective

e Same idea as the regularization term in ridge regression

24



How to Solve this Problem?

. 1.2
min §||w\|2+Czn:§n
st ya[w' ' x,+b]>1—¢,, ¥V n

£, >0, Vn

e This is a convex quadratic program: the objective function is
quadratic in w and linear in & and the constraints are linear
(inequality) constraints in w, b and &,.
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How to Solve this Problem?

N T
min 5||W\|2+C2n:6n

s.t. y,,[wa,, +b>1-&, ¥V n
>0, Vn

e This is a convex quadratic program: the objective function is
quadratic in w and linear in & and the constraints are linear
(inequality) constraints in w, b and &,.

e Early solvers were based on general-purpose quadratic program
solvers (e.g. similar to scipy.optimize or Matlab's quadprog(),
albeit in the 1990s)
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How to Solve this Problem?

. 1 5
NG FIvE e
s.t. y,,[wa,,—l—b]zl—f,,, V n
£, >0, Vn

e This is a convex quadratic program: the objective function is
quadratic in w and linear in & and the constraints are linear
(inequality) constraints in w, b and &,.

e Early solvers were based on general-purpose quadratic program
solvers (e.g. similar to scipy.optimize or Matlab's quadprog(),
albeit in the 1990s)

e SVM solvers today are based on highly optimized search algorithms
that exploit SVM-specific structure.

25



Support Vectors: Revisited

wT¢£z) +b=1

Support vectors are highlighted by the dotted orange lines. What does
this mean mathematically?

26



Support Vectors: Revisited

wT¢£m)+b:1
il /H:wT¢(w)+b:0

Recall the constraints yn[w-'—x,7 + b] > 1—¢, from the soft-margin
formulation. All the training points (x,, y,) that satisfies the constraint

with “=" are support vectors.

27



Support Vectors: Revisited

szz)gm) +b=1

In other words, support vectors satisfy y,[w ' x, + b] =1 — &, , which
can be further divided into several categories:
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Support Vectors: Revisited

szz)gm) +b=1

In other words, support vectors satisfy y,[w ' x, + b] =1 — &, , which
can be further divided into several categories:

e &, = 0: y,[wTx,+ b] = 1, the point is on the correct side with

distance L.
[wl|
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Support Vectors: Revisited

® 'wT:z)gm) +b=1

e /H:wrr(i)(w)-&-b:O

In other words, support vectors satisfy y,[w ' x, + b] =1 — &, , which

can be further divided into several categories: S——

e &, = 0: y,[wTx,+ b] = 1, the point is on the correct side with
distance m

e 0 <&, <1 yo[w'x,+ b] €]0,1) on the correct side, but with
distance less than m

28



Support Vectors: Revisited

@ szz)gm) +b=1
- T

In other words, support vectors satisfy y,[w ' x, + b] =1 — &, , which
can be further divided into several categories:

e &, = 0: y,[wTx,+ b] = 1, the point is on the correct side with
distance m

e 0 <&, <1 yo[w'x,+ b] €]0,1) on the correct side, but with
distance less than m

e &, > 1 y,[wTx,+ b] <0, on the wrong side of the boundary.
28



Example of SVM

Xo y=_1 y=1
o O
@) O
..- ®
@]
I . | *—@
0 1 2 3 4 5 X4
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Example of SVM

2 y=-1 y =1
o o
O O
l.. PY
@]
= O—>
0 1 2 3 4 5 X

What will be the decision boundary learnt by solving the SVM

optimization problem?

29



Example of SVM

X3 _ X,-2.5=0 _
y_ll 1 =1
.I 1 Y
1 ? Y
.l+ 1 O
1 o)
| [af ——0—
0 1 2 3 4 5 Xq

Margin = 1.5; the decision boundary has w = [1,0] ", and b = —2.5.
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Example of SVM

X, _ 4 X%-25=0 _
y3-l |v—1
.I 1 Y
1 ? Y
.l+ 1 O
| O
| [af ——0—
0 1 2 3 4 5 X

Margin = 1.5; the decision boundary has w = [1,0] ", and b = —2.5.

Not quite: we need the support vectors to satisfy to y,(w'x, + b) = 1.
For example, for x,, = [1,0] ", we have

Ya(w %, + b) = (—=1)[1 — 2.5] = 1L.5.
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Example of SVM: Scaling

% g (2x,-5)/3 =0 ye1

4 1 1
.I | s
1 ? Y
.l* 1 O
1 e)
— O—O >
0 2 3 4 5 X1

Thus, our optimization problem will re-scale w and b to get this equation
for the same decision boundary.
Margin = 1.5; the decision boundary has w = [2/3,0]", and b = —5/3.
For example, for x, = [1,0] T, we have

Yo, + b) = (~1)[2/3 —5/3] = 1.
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Example of SVM: Support Vectors

Xy y=-1 (2x,-5)/3=0

poe

The solution to our optimization problem will be the same to the

reduced dataset containing all the support vectors.

32



Example of SVM: Support Vectors

y3 Iy=1
(] 1 1

.- l. ; f : ‘
| B @]
S o I ®

l. . | @) O
o ji o ——0—

w0 1 2 3 4 e Xq

There can be many more data than the number of support vectors (so we
can train on a smaller dataset).
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Example of SVM: Resilience to Outliers

e Still linearly separable, but one of the orange dots is an “outlier”.
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Example of SVM: Resilience to Outliers

e Naively applying the hard-margin SVM will result in a classifier with
small margin.
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Example of SVM: Resilience to Outliers

=-1 _

y iy y=1

't Y
I? P

.l+| O
(NN @]

} Oo—0

0 117 2 3 4 5 X1

e Naively applying the hard-margin SVM will result in a classifier with
small margin.

e So, better to use the soft-margin (or equivalently, hinge loss)
formulation.
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Example of SVM: Resilience to Outliers

X y:_l | y=1 Xz y:_I]_ |V=1
1] 1
.I? . ° .I .._gn—‘: PY
" +| o .l+ 1 e
1| Y il 0
| Fin —o —0
0 il 2 3 a2 5 X 0 1 213 4 s X
min 1||WH2—|—CZ§
w,be 2 2 . "

s.t. yn[WTXn+b] > 1_§n7 V. on
§n >0, Vn

Due to the flexibility provided by C, (properly tuned) SVM is less
sensitive to outliers.
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Example of SVM: Resilience to Outliers
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. 1.0
min gIwlE+C3 6

s.t. y,,[wa,, +b>1-&, ¥V n
§n >0, Vn

e What happens if C is very small?
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§n >0, Vn

e What happens if C is very small? More data points near the
boundary are disregarded.
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s.t. y,,[wa,, +b>1-&, ¥V n
§n >0, Vn

e What happens if C is very small? More data points near the
boundary are disregarded.

e What happens if C is 0?7
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Example of SVM: Resilience to Outliers

Xy y__ll y=1 X y:.ll y=1
m' m' 1
I? ° e l.._E"—‘ L
" +| o .l+ : e
1| Y I i
1|' *—e | —— *—eo
0 11" 2 3 4 5 X 0 1 2|3 4 s X

. 1 5
mn I+ €Y
s.t. y,,[wa,,er] >1-&, V n

20, Vn

e What happens if C is very small? More data points near the
boundary are disregarded.

e What happens if C is 07 All data points will be ignored.
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Example of SVM: Resilience to Outliers

Xy y__ll y=1 X y:.ll y=1
1] 1
.'f ™ . .| ..—E“_‘I *
1
" +| o .l+ 1 e
1 o 1 il
4._|| @ @ L F 1 O
0 i1 2 3 4 5 X 0 1 213 4 5 Xy

. 1.0
min gIwlE+C3 6

s.t. y,,[wa,, +b>1-&, ¥V n
§n >0, Vn

e What happens if C is very large?
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Example of SVM: Resilience to Outliers
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§n >0, Vn

e What happens if C is very large? Outliers near the decision
boundary will have a greater impact.
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Example of SVM: Resilience to Outliers

Xy y__l I y=1 X y:.ll y=1
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s.t. y,,[wa,, +b>1-&, ¥V n
§n >0, Vn

e What happens if C is very large? Outliers near the decision
boundary will have a greater impact.

e What happens if C is co?
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Example of SVM: Resilience to Outliers

Xy y__ll y=1 X y:.ll y=1
m' m' 1
I? ° e l.._E"—‘ L
" +| o .l+ : e
1| Y I i
1|' *—e | —— *—eo
0 11" 2 3 4 5 X 0 1 2|3 4 s X

. 1 5
i I CYg
s.t. y,,[wa,,er]zlffn, V n
§n >0, Vn

e What happens if C is very large? Outliers near the decision
boundary will have a greater impact.

e What happens if C is co? We get hard margin SVM.
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Hinge Loss Formulation




SVM vs. Logistic Regression

SVM soft-margin formulation Logistic regression formulation
. 1 2 min fZ{y logo(w ' x,)
A~ C n n n
min - Slwllz+ ans "
.
st yalw'x,+b]>1-¢,, Vn + (1= yn) log[l — o(w ' x,)]}
A
& 20, Vn EHW”z
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SVM vs. Logistic Regression

SVM soft-margin formulation Logistic regression formulation
. 1 2 min — E {yaloga(w'x,)
- C i n n
min Slwllz + E 3 w

yn) log[1 — o (w " x,)]}

HW”z

st yalw'x,+b]>1-¢,, Vn

+(1-

)\

> —
€n >0, Vn +3

e Logistic regression defines a loss for each data point and minimizes
the total loss plus a regularization term.
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SVM vs. Logistic Regression

SVM soft-margin formulation Logistic regression formulation

. 1 in nl T N
min IwE+ €36 min =2 {mlog o (wxe)
.
st yalw xp+b]>1—&,, Vn Yn)log[l —a(w ' x,)]}

fnZOa Vn HW”Z

)\

2

e Logistic regression defines a loss for each data point and minimizes
the total loss plus a regularization term.

e This is convenient for assessing the “goodness” of the model on

each data point.
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SVM vs. Logistic Regression

SVM soft-margin formulation Logistic regression formulation
. 1 2 min — E {yaloga(w'x,)
- C i n n
min Slwllz + E 3 w

yn) log[1 — o (w " x,)]}

HW”z

st yalw'x,+b]>1-¢,, Vn +(1-
LA
gn Z Oa Vn E

e Logistic regression defines a loss for each data point and minimizes
the total loss plus a regularization term.

e This is convenient for assessing the “goodness” of the model on
each data point.

e Can we write SVMs in this form as well?
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SVM vs. Logistic Regression

SVM soft-margin formulation Logistic regression formulation
. 1 2 min — E {yaloga(w'x,)
- C i n n
min Slwllz + E 3 w

st yo[w x,+b]>1—¢,, Vn yn) log[l — o (w " x,)]}

£ >0, Vn

+(1-
)\
5 HW”z

e Logistic regression defines a loss for each data point and minimizes
the total loss plus a regularization term.

e This is convenient for assessing the “goodness” of the model on
each data point.

e Can we write SVMs in this form as well? The Hinge Loss

formulation!
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Derive the Hinge Loss Formulation

Here’s the soft-margin formulation again:

w3+ C> & stoyalw xpy+ b >1-&,, 6 >0, Vn

N| -

min
w,b,§
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Derive the Hinge Loss Formulation

Here’s the soft-margin formulation again:

w3+ C> & stoyalw xpy+ b >1-&,, 6 >0, Vn
n -“

N| -

min
w,b,§

Now since y,[w'x, +b] > 1 —§&, <= &, > 1— y,[w'x, + b]:
P ——— —
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Derive the Hinge Loss Formulation

Here’s the soft-margin formulation again:

1
min Sl €36 st x +H 21 & 20,
Now since,[w ' x, + §] > 1 &Zly—‘uﬂ‘
A

1
min €376+ 5 [wl3 sit. & > max(0. 1~ yo[w x4 b)), ¥ n
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Derive the Hinge Loss Formulation

Here’s the soft-margin formulation again:

1 / "
ll)ng §HW||2 + CM": yn[WTXn + b] > 1- £n7 fn > 07 Von

n

Now since y,[w'x, +b] > 1 —§&, <= &, > 1— y,[w'x, + b]:

. 1
min CZ{H + §||w||§ s.t.é,, > hax(0,1 — y,[w ' x, + b]),\v n

~—

Now since the &, should always be as small as possible, we obtain:

1
min C max(0,1 — ya[w " x, + b]) + = ||w|3
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Derive the Hinge Loss Formulation

Here’s the soft-margin formulation again:

L2
min §HW||2—|—C2,1:§,, s.t.

n>0)Vn

Volw ' x, +b] > 1-¢,

Now since y,[w'x, +b] > 1—¢&, ~ yolw " x, + b]:

m|n CZ€” |w||2 s.t. &, x(0,1 = yp[w " x, + b]), V n

Now since the &, should always foe as sfpall as possible, we obtain

m|@: max(07 —}/n[WTxn"‘ + 7HWH§
w,b - 2

e~

Divide by C and set A = % we get get Hinge Loss formulation:

m|n ZmaxO 1—)/n[W X+ b]) EH H%
40

Hinge Loss for x,,y,




Logistic Regression Loss vs Hi

Given training data (x,, y,), the cross entropy loss was

~{ynloga(w ' xa) + (1 — yu)log[l — o(w ' x,)]}

Ify=0 Ify=1

2.0 201
g 15 § 15
£ 10 e =10 S
2 ’ 2 ~
Q 4 Q ~
2 Pig 3 So

05 - 05 Seo

-2 -1 0 -2 -1 0 1 2
WTX WTX

e What does the Hinge Loss Function look like?




Logistic Regression Loss vs Hi

Given training data (x,, y,), the Hinge loss is

max(0,1 — y,[w ' x, + b])

max (w'xp +b+1,0) max (1 — wlix, — b, 0)

Ify=-1 Ify=1

"~
"~

Loss Function
o ow
Loss Function
oW

=

ne. Wm
e Loss grows linearly as we move away from the boundary.

e No penalty if a point is more than 1 unit from the boundary.
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Hinge Loss SVM Formulation

Minimizing the total hinge loss on all the training data

. A
min >7 max(0,1— y,[w " x, + b)) + 5 wl3
n N——

regularizer

hinge loss for sample n

Analogous to regularized least squares or logistic regression, as we
balance between two terms (the loss and the regularizer).
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Hinge Loss SVM Formulation

Minimizing the total hinge loss on all the training data

. A
min >7 max(0,1— y,[w " x, + b)) + 5 wl3
n N——

regularizer

hinge loss for sample n

Analogous to regularized least squares or logistic regression, as we
balance between two terms (the loss and the regularizer).

e Can solve using gradient descent to get the optimal w and b
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Hinge Loss SVM Formulation

Minimizing the total hingedoss

hinge loss for sample n .
regularizer

Analogous to regularized least squares or logistic regression, as we
balance between two terms (the loss and the regularizer).

e Can solve using gradient descent to get the optimal w and b

e Gradient of the first term will be either 0, x,, or —x,, depending on
v, and w'x, + b.

43



Hinge Loss SVM Formulation

Minimizing the total hinge lass owMining data
A

m|n Zmax )yn[w X, + b)) + f||w||§

H,_/

hinge loss for sample n

regularizer

Analogous to regularized least squares or logistic regression, as we
balance between two terms (the loss and the regularizer).

e Can solve using gradient descent to get the optimal w and b

e Gradient of the first term will be either 0, x,, or —x,, depending on
v, and w'x, + b.

e Much easier to compute than in logistic regression, where we need
to compute the sigmoid function o(w " x, + b) in each iteration.
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Summary




Three SVM Formulations

Hard-margin (for separable data)

mli)ng §Hw||% s.t. yn[wa,, +b>1,& >0,Vn
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Three SVM Formulations

Hard-margin (for separable data)

mli)ng §Hw||% s.t. yn[wa,, +b>1,& >0,Vn

Soft-margin (add slack variables)

o1
min 5Hw||§ + cznjgn stoya[w x,+b]>1—¢&,, £,>0,Vn
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Three SVM Formulations

Hard-margin (for separable data)

mli)ng §Hw||% s.t. yn[wa,, +b>1,& >0,Vn

Soft-margin (add slack variables)

o1
min 5Hw||§ + cznjgn stoya[w x,+b]>1—¢&,, £,>0,Vn

Hinge loss (define a loss function for each data point)

. A
T,Ig Z max(0,1 — y,[w ' x, + b]) + §||W||§
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Advantages of SVM

We've seen the geometric formulation of SVM and the equivalent

formulation of minimizing the empirical hinge loss.

This explains why SVM:

Is less sensitive to outliers.
Maximizes distance of training data from the boundary.
Only requires a subset of the training points.

Generalizes well to many nonlinear models.

o~ W

Scales better with high-dimensional data.

We will need to use duality to show the remaining properties.
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You should know:

e Max-margin formulation for separable and non-separable SVMs.
e Definition and importance of support vectors.
e Hinge loss formulation of SVMs.

e Equivalence of the max-margin and hinge loss formulations.
Next class:

e Duality
e Nonlinear SVM
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