
18-661 Introduction to Machine Learning

Support Vector Machines (SVM) – II

Spring 2024



Announcements

Midterm Exam, 2/28:

• Mix of multiple choice and short answer questions

• Content will include up to SVM (this lecture)

• Topics: MLE/MAP, linear regression; bias-variance tradeoff,

overfitting, naive bayes, logistic regression, SVM

• HW3 will (hopefully) be graded before the midterm

More details to follow.
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Outline

1. Review: Linear SVM

2. Duality

3. Kernel SVM

4. SVM in Context

5. Summary
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Outline

Last Class:

• Max-margin formulation for separable and non-separable SVMs.

• Definition and importance of support vectors.

• Hinge loss formulation of SVMs.

• Equivalence of the max-margin and hinge loss formulations.

Today:

• Duality

• Nonlinear SVM

• SVM in context
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Review: Linear SVM



Intuition: Where to Put the Decision Boundary?

w·x+b=0

w·x+b=0

Find a decision boundary in the ’middle’ of the two classes that:

• Perfectly classifies the training data

• Is as far away from every training point as possible
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Defining the Margin

Margin
Smallest distance between the hyperplane and all training points

margin(w , b) = min
n

yn[w⊤xn + b]

∥w∥2

H : wTφ(x) + b = 0

|wTφ(x) + b|
�w�2

How can we use this to find the SVM solution?
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Rescaled Margin

We further constrain the problem by scaling (w , b) such that

min
n

yn[w⊤xn + b] = 1.

which leads to:

margin(w , b) =
minn yn[w⊤xn + b]

∥w∥2
=

1

∥w∥2
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SVM: Max-margin Formulation for Separable Data

We thus want to solve:

max
w ,b

1

∥w∥2︸ ︷︷ ︸
margin

such that min
n

yn[w⊤xn + b] = 1︸ ︷︷ ︸
scaling of w , b

This is equivalent to

min
w ,b

1

2
∥w∥22

s.t. yn[w⊤xn + b] ≥ 1, ∀ n
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SVM for Non-separable Data

Constraints in separable setting

yn[w⊤xn + b] ≥ 1, ∀ n

This inherently requires all the training data are correctly separated into

two sides of the boundary.

Constraints in non-separable setting
Can we modify our constraints to account for non-separability?

Specifically, we introduce slack variables ξn ≥ 0:

yn[w⊤xn + b] ≥ 1− ξn, ∀ n

8



Soft-margin SVM Formulation

We do not want ξn to grow too large, and we can control their size by

incorporating them into our optimization problem:

min
w ,b,ξ

1

2
∥w∥22 + C

∑
n

ξn

s.t. yn[w⊤xn + b] ≥ 1− ξn, ∀ n

ξn ≥ 0, ∀ n
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Support Vectors: Revisit

H : wT�(x) + b = 0

wT�(x) + b = 1

wT�(x) + b = �1

⇠n = 0

⇠n < 1
⇠n > 1

Recall the constraints yn[w⊤xn + b] ≥ 1− ξn from the soft-margin

formulation. All the training points (xn, yn) that satisfies the constraint

with “=” are support vectors.
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Support Vectors: Revisit

H : wT�(x) + b = 0

wT�(x) + b = 1

wT�(x) + b = �1

⇠n = 0

⇠n < 1
⇠n > 1

In other words, support vectors satisfy yn[w⊤xn + b] = 1− ξn , which

can be further divided into several categories:

• ξn = 0: yn[w⊤xn + b] = 1, the point is on the correct side with

distance 1
∥w∥ .

• 0 < ξn ≤ 1: yn[w⊤xn + b] ∈ [0, 1) on the correct side, but with

distance less than 1
∥w∥ .

• ξn > 1: yn[w⊤xn + b] < 0, on the wrong side of the boundary.
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Summary: Three SVM Formulations

In order to learn a linear classifier y = sign(wTx+ b):

Hard-margin (for separable data)

min
w ,b,ξ

1

2
∥w∥22 s.t. yn[w⊤xn + b] ≥ 1, ξn ≥ 0, ∀ n

Soft-margin (add slack variables)

min
w ,b,ξ

1

2
∥w∥22 + C

∑
n

ξn s.t. yn[w⊤xn + b] ≥ 1− ξn, ξn ≥ 0, ∀ n

Hinge loss (define a loss function for each data point)

min
w ,b

∑
n

max(0, 1− yn[w⊤xn + b]) +
λ

2
∥w∥22
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Duality



Advantages of SVM

So far, we have shown that SVM is:

1. Is less sensitive to outliers.

2. Maximizes distance of training data from the boundary.

3. Only requires a subset of the training points.

4. Generalizes well to many nonlinear models.

5. Scales better with high-dimensional data.

We will now use duality to show the fourth property.
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What is the Lagrangian?

Consider optimization problem

p∗ = min f (x) s.t. g(x) ≤ 0.

The Lagrangian is defined as L(x, λ) = f (x) + λTg(x).

• λ is called the “Lagrange Multiplier.”

• You can think of λTg(x) as “penalty” for constraint violation.
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What Is Duality?

Consider the optimization problem

p∗ = min f (x) s.t. g(x) ≤ 0.

The Lagrangian is defined as L(x, λ) = f (x) + λTg(x).

The above (known as primal) is equivalent to minx maxλ≥0 L(x, λ).

• If gi (x) ≤ 0, maxλi≥0 L(x, λi ) = f (x)

• If gi (x) > 0, maxλi≥0 L(x, λi ) = +∞
• Effectively enforces constraint g(x) ≤ 0.

Dual problem: swapping the order of min and max

d∗ = max
λ≥0

min
x

L(x , λ)︸ ︷︷ ︸
known as dual function D(λ)
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Properties of Duality

Primal: p∗ = min
x

max
λ≥0

f (x) + λTg(x)

Dual: d∗ = max
λ≥0

min
x

f (x) + λTg(x)

Strong Duality: p∗ = d∗ (sometimes)

• The duality gap is the difference p∗ − d∗

• p∗ − d∗ = 0 under certain conditions (e.g. convex and continuous;

discussed further in Convex Optimization)

Complementary Slackness: if p∗ = d∗, then...

• gi (x) < 0 =⇒ λi = 0

• λi > 0 =⇒ gi (x) = 0

• Equivalently, λigi (x) = 0
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Duality: Example

Consider the following problem with optimizer x∗ = −1, optimal value 1
2 .

min
1

2
x2 s.t. x + 1 ≤ 0

Lagrangian L(x , λ) = 1
2x

2 + λ(x + 1)

Dual problem: D(λ) = minx L(x , λ) - how to compute?

• Set ∇xL(x , λ) = x + λ = 0 ⇒ x∗(λ) = −λ

• D(λ) = L(x∗(λ), λ) = − 1
2λ

2 + λ

Dual solution:

• maxλ≥0 D(λ) = 1/2 (achieved at λ∗ = 1) — same as the optimal

value of the primal

• x∗(λ∗) = −1 recovers optimal primal solution
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Duality: Example

Recap: for the following problem with optimizer

min
1

2
x2 s.t. x + 1 ≤ 0

• Primal solution x∗ = −1 satisfies constraint x + 1 ≤ 0 with =.

• Dual solution λ∗ = 1 is non-zero.

Slightly change the problem:

min
1

2
x2 s.t. x − 1 ≤ 0

• Primal solution x∗ = 0 satisfies constraint x − 1 ≤ 0 with <.

• Can show dual solution λ∗ is zero.
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Duality: Summary

Duality is a way of transforming a constrained optimization problem.

It tells us sometimes-useful information about the problem structure, and

can sometimes make the problem easier to solve.

• Under strong duality condition, the primal and dual problems are

equivalent.

• Further, due to complementary slackness, dual variables tell us

whether constraints are met with = or < .

• The strong duality condition is not always true for all optimization

problems, but is true for the soft-margin SVM problem.

Instead of solving the max margin (primal) formulation, we solve its dual

problem which will have certain advantages we will see.
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Derivation of the Dual

Here is a skeleton of how to derive the dual problem.

Recipe

1. Formulate the generalized Lagrangian function that incorporates the

constraints and introduces dual variables

2. Minimize the Lagrangian function over the primal variables

3. Plug in the primal variables from the previous step into the

Lagrangian to get the dual function

4. Maximize the dual function with respect to dual variables

5. Recover the solution (for the primal variables) from the dual

variables
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Deriving the Dual for SVM

Primal SVM:

min
w ,b,ξ

1

2
∥w∥22 + C

∑
n

ξn

s.t. yn[w⊤xn + b] ≥ 1− ξn, ∀ n

ξn ≥ 0, ∀ n

The constraints are equivalent to the following canonical forms:

−ξn ≤ 0 and 1− yn[w⊤xn + b]− ξn ≤ 0

Lagrangian:

L(w , b, {ξn}, {αn}, {λn}) = C
∑
n

ξn +
1

2
∥w∥22 −

∑
n

λnξn

+
∑
n

αn{1− yn[w⊤xn + b]− ξn}

under the constraints that αn ≥ 0 and λn ≥ 0.
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Deriving the Dual of SVM

Lagrangian

L(w , b, {ξn}, {αn}, {λn}) = C
∑
n

ξn +
1

2
∥w∥22 −

∑
n

λnξn

+
∑
n

αn{1− yn[w⊤xn + b]− ξn}

under the constraints that αn ≥ 0 and λn ≥ 0.

• Primal variables: w , b, {ξn}; dual variables {αn}, {λn}

• Minimize the Lagrangian function over the primal variables by

setting ∂L
∂w = 0, ∂L

∂b = 0, and ∂L
∂ξn

= 0.

• Substitute primal variables from the above into the Lagrangian to

get the dual function.

• Maximize the dual function with respect to dual variables.
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Deriving the Dual of SVM

Looking just at the terms that contain x:

L(. . .) = C
∑
n

ξn +
1

2
∥w∥22 −

∑
n

λnξn +
∑
n

αn{1− yn[w⊤xn + b]− ξn}

•
∂L

∂w
= 0 =⇒ w −

∑
n

αnynxn = 0 =⇒ w =
∑
n

αnynxn

• D({αn}, {λn}) = . . .+
1

2
||w ||22 +

∑
n

αnynw
Txn + . . .

1

2
||w||22 =

1

2
wTw =

1

2

∑
m,n

ymynαmαnx
T
mxm

∑
n

αnynw
Txn = −

∑
n

αnyn

(∑
m

αmymxm

)T

xn

= −
∑
m,n

ymynαmαnx
T
mxn
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Deriving the Dual of SVM

Lagrangian

L(w , b, {ξn}, {αn}, {λn}) = C
∑
n

ξn +
1

2
∥w∥22 −

∑
n

λnξn

+
∑
n

αn{1− yn[w⊤xn + b]− ξn}

If we perform the full procedure, we get the dual function D({αn}, {λn}):

max
α

∑
n

αn −
1

2

∑
m,n

ymynαmαnx⊤
mxn

s.t. 0 ≤ αn ≤ C , ∀ n∑
n

αnyn = 0
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Dual Formulation of SVM

Dual is also a convex quadratic program

max
α

∑
n

αn −
1

2

∑
m,n

ymynαmαnx⊤
mxn

s.t. 0 ≤ αn ≤ C , ∀ n∑
n

αnyn = 0

• There are N dual variables αn, one for each data point

• Independent of the size d of x: SVM scales better for

high-dimensional features.

• May seem like a lot of optimization variables when N is large, but

many of the αn become zero. Why?
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Complementary Slackness in SVM

Primal Max-Margin Formulation

min
w ,b,ξ

1

2
∥w∥22 + C

∑
n

ξn

s.t. yn[w⊤xn + b] ≥ 1− ξn, ∀ n

ξn ≥ 0, ∀ n

Dual Formulation

max
α

∑
n

αn −
1

2

∑
m,n

ymynαmαnx⊤
mxn

s.t. 0 ≤ αn ≤ C , ∀ n∑
n

αnyn = 0
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Why Do Many αn Become Zero?

Primal Formulation:

. . . s.t. yn[w⊤xn + b] ≥ 1− ξn, ∀ n . . .

Dual Formulation:

. . . s.t. 0 ≤ αn ≤ C , ∀ n . . .

• By complementary slackness:

αn{1− ξn − yn[w⊤xn + b]} = 0 ∀n

• This tells us that αn > 0 only when 1− ξn = yn[w⊤xn + b], i.e.

(xn, yn) is a support vector. So most of the αn is zero, and the only

non-zero αn are for the support vectors.

• Further, αn < C only when ξn = 0. (The derivation of this is beyond

the scope of today’s lecture)

27
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Visualizing the Support Vectors

H : wT�(x) + b = 0

wT�(x) + b = 1

wT�(x) + b = �1

⇠n = 0

⇠n < 1
⇠n > 1

• αn = 0 =⇒ ξn = 0, yn[wTxn + b] ≥ 1: non-support vector (with

some edge cases).

• 0 < αn < C =⇒ ξn = 0, yn[wTxn + b] = 1: support vector with

distance to boundary 1
∥w∥ .

• αn = C =⇒ ξn < 0, yn[w⊤xn + b] < 1: support vector which

violates the margin.
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How to Get w and b?

Lagrangian:

L(. . .) = C
∑
n

ξn +
1

2
∥w∥22 −

∑
n

λnξn +
∑
n

αn{1− yn[w⊤xn + b]− ξn}

Recovering w:
∂L

∂w
= 0 =⇒ w =

∑
n

αnynxn

Only depends on support vectors, i.e., points with αn > 0!

Recovering b:

If you can find a sample (xn, yn) such that 0 < αn < C , (more

complicated if you can’t), use yn ∈ {−1, 1}:

yn[w⊤xn + b] = 1

b = yn − w⊤xn = yn −
∑
m

αmymx⊤
mxn
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Summary of Dual Formulation

Primal Max-Margin Formulation

min
w ,b,ξ

1

2
∥w∥22 + C

∑
n

ξn

s.t. yn[w⊤xn + b] ≥ 1− ξn, ∀ n

ξn ≥ 0, ∀ n

Dual Formulation

max
α

∑
n

αn −
1

2

∑
m,n

ymynαmαnx⊤
mxn

s.t. 0 ≤ αn ≤ C , ∀ n∑
n

αnyn = 0

• In dual formulation, the # of variables is independent of dimension.

• Most of the dual variables are 0, and the non-zero ones are the

support vectors.

• Can easily recover the primal solution w , b from dual solution.
30



Advantages of SVM

We have shown that SVM:

1. Maximizes distance of training data from the boundary

2. Only requires a subset of the training points.

3. Is less sensitive to outliers.

4. Scales better with high-dimensional data.

5. Generalizes well to many nonlinear models.

Next: nonlinearity using the “Kernel Trick.”
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Kernel SVM



Naive nonlinearity

What if the data is not linearly separable?

Do some feature engineering, e.g. use a feature transformation

ϕ(x) = [x1, x2, x
2
1 + x22 ] to transform the data in a 3D space.
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Can we do better?

Feature engineering is very labor-intensive, and doesn’t scale ...

What if we can automatically pick features instead?

• Toss in every feature transformation we can think of?

• Randomly generate nonlinear projections of the data?

We can do even better!

Key insight: the dual problem does not depend on x or ϕ(x), only

ϕ(x)Tϕ(x).
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Primal and Dual SVM Formulations: Kernel Versions

Primal:

min
w ,b,ξ

1

2
∥w∥22 + C

∑
n

ξn

s.t. yn[w⊤ϕ(xn) + b] ≥ 1− ξn, ∀ n

ξn ≥ 0, ∀ n

Dual:

max
α

∑
n

αn −
1

2

∑
m,n

ymynαmαnϕ(xm)
⊤ϕ(xn)

s.t. 0 ≤ αn ≤ C , ∀ n∑
n

αnyn = 0

• In the dual problem, we only need ϕ(xm)
⊤ϕ(xn).

• ϕ can be very complicated, even infinite dimensional, as long as we

know how to calculate ϕ(xm)
⊤ϕ(xn).
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The Kernel Trick

We replace the inner products ϕ(xm)
⊤ϕ(xn) with a kernel function

max
α

∑
n

αn −
1

2

∑
m,n

ymynαmαnk(xm, xn)

s.t. 0 ≤ αn ≤ C , ∀ n∑
n

αnyn = 0

What is kernel function?

• k(xm, xn) is a scalar valued function that measures the similarity of

xm and xn

• k(xm, xn) is a valid kernel function if it is symmetric and

positive-definite.
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The Kernel Trick

We replace the inner products ϕ(xm)
⊤ϕ(xn) with a kernel function

max
α

∑
n

αn −
1

2

∑
m,n

ymynαmαnk(xm, xn)

s.t. 0 ≤ αn ≤ C , ∀ n∑
n

αnyn = 0

Why we can use kernel function to replace ϕ(xm)
⊤ϕ(xn)? Each valid

kernel k(xm, xn) will implicitly define a ϕ(x) in the sense

k(xm, xn) = ϕ(xm)⊤ϕ(xn).

Note that we don’t have to compute ϕ or even need to know how to

compute it!
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Examples of Popular Kernel Functions

Here are some example kernel functions and the corresponding feature.

• Dot product:

k(xm, xn) = x⊤mxn, corresponding ϕ(x) = x

• Dot product with PD matrix Q:

k(xm, xn) = x⊤mQxn, corresponding ϕ(x) = Q1/2x

• Polynomial kernels (corresponding ϕ(x) complicated):

k(xm, xn) = (1 + x⊤mxn)
d , d ∈ Z+

• Radial basis kernel (corresponding ϕ(x) complicated):

k(xm, xn) = exp
(
−γ ∥xm − xn∥2

)
for some γ > 0

and many more.
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Test Prediction

Learning w and b:

w =
∑
n

αnynϕ(xn),

b = yn − w⊤ϕ(xn) = yn −
∑
m

αmymk(xm, xn)

But for test prediction on a new point x, do we need the form of ϕ(x) in

order to find the sign of w⊤ϕ(x) + b?

Fortunately, no!

Test Prediction:

h(x) = sign(
∑
n

ynαnk(xn, x) + b)

At test time it suffices to know the kernel function! So we really do not

need to know ϕ.
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Summary of Kernel SVM

Given a dataset {(xn, yn) for n = 1, 2, . . . ,N}, how do you classify it

using kernel SVM ?

Select a kernel. In general, you don’t need to concretely define ϕ(x) and

can just use one of the popular kernel functions (polynomial kernel or

radial kernel).

Training

max
α

∑
n

αn −
1

2

∑
m,n

ymynαmαnk(xm, xm)

s.t. 0 ≤ αn ≤ C , ∀ n∑
n

αnyn = 0

Prediction

h(x) = sign(
∑
n

ynαnk(xn, x) + b)
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Example of Kernel SVM

Given a dataset {(xn, yn) for n = 1, 2, . . . ,N}, how do you classify it

using kernel SVM ?

Image Source: https:

//www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html
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Example of Kernel SVM

Given a dataset {(xn, yn) for n = 1, 2, . . . ,N}, how do you classify it

using kernel SVM ?

Here is the decision boundary with linear soft-margin SVM

Image Source: https:

//www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html
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Example of Kernel SVM

Given a dataset {(xn, yn) for n = 1, 2, . . . ,N}, how do you classify it

using kernel SVM ?

What if the data is not linearly separable?

Image Source: https:

//www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html
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Example of Kernel SVM

Given a dataset {(xn, yn) for n = 1, 2, . . . ,N}, how do you classify it

using kernel SVM ?

The linear decision boundary is pretty bad...

Image Source: https:

//www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html
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Example of Kernel SVM

Given a dataset {(xn, yn) for n = 1, 2, . . . ,N}, how do you classify it

using kernel SVM ?

Use feature ϕ(x) = [x1, x2, x
2
1 + x22 ] to transform the data in a 3D space

Image Source: https:

//www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html
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Example of Kernel SVM

Given a dataset {(xn, yn) for n = 1, 2, . . . ,N}, how do you classify it

using kernel SVM ?

Then find the decision boundary. How? Solve the dual problem!

max
α

∑
n

αn −
1

2

∑
m,n

ymynαmαnϕ(xm)
⊤ϕ(xn)

s.t. 0 ≤ αn ≤ C , ∀ n∑
n

αnyn = 0

Then find w and b. Predict y = sign(wTϕ(x) + b).
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Example of Kernel SVM

Given a dataset {(xn, yn) for n = 1, 2, . . . ,N}, how do you classify it

using kernel SVM ?

Here is the resulting decision boundary

Image Source: https:

//www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html
46
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Example of Kernel SVM

Given a dataset {(xn, yn) for n = 1, 2, . . . ,N}, how do you classify it

using kernel SVM ?

Effect of the choice of kernel: Polynomial kernel (degree 4)

Image Source: https:

//www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html
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Example of Kernel SVM

Given a dataset {(xn, yn) for n = 1, 2, . . . ,N}, how do you classify it

using kernel SVM ?

Effect of the choice of kernel: Radial Basis Kernel

Image Source: https:

//www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html
48
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Advantages of SVM

Now we have shown all of the below.

1. Maximizes distance of training data from the boundary

2. Only requires a subset of the training points.

3. Is less sensitive to outliers.

4. Scales better with high-dimensional data.

5. Generalizes well to many nonlinear models.
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SVM in Context



Linear vs Kernel SVM

If the data is not linearly separable, should we use Linear or Kernel SVM

if the data...

• can’t be easily transformed to be linearly separable?

• can be transformed to be linearly separable?

• can be transformed into a high dimensional space to be linearly

separable?

• can be transformed into a low dimensional space to linearly

separable?

If the data is linearly separable, does it still make sense to use Kernel

SVM?
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What does SVM address?

SVM addresses:

• Scaling with dataset size (via sparse support vectors)

• Scaling with high dimensionality (via dual problem)

• “Nonparametric” nonlinearity

SVM does not address:

• Scaling with dataset size and high dimensionality

• Main optimization loop of primal SVM is O(dimensionality)

• Dual SVM is O(dataset size)
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What happened to SVMs?

Trees!

You will see that tree ensemble methods can be (circa 2000, e.g. random

forest) can scale well with high-dimensionality, dataset size, while

handling nonlinearity.
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What happened to SVMs?

Some attempt to maintain relevance:

• As data systems scaled, dataset size became much more important

than dimensionality

• What if we used linear SVM, but randomly generated ϕ(x) so that

ϕ(xm)Tϕ(xn) = k(xm, xn) for a common k?

• “Random Features for Large-Scale Kernel Machines,” Rahimi &

Recht (2007)
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What are SVMs still used for?

Thoughts?

• Strict inference-time compute requirements

• Explainability, e.g. regulatory or liability reasons

• Low-dimensional data

• If a very simple model is sufficient
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Summary



Three SVM Formulations

Hard-margin (for separable data)

min
w ,b,ξ

1

2
∥w∥22 s.t. yn[w⊤xn + b] ≥ 1, ξn ≥ 0, ∀ n

Soft-margin (add slack variables)

min
w ,b,ξ

1

2
∥w∥22 + C

∑
n

ξn s.t. yn[w⊤xn + b] ≥ 1− ξn, ξn ≥ 0, ∀ n

Hinge loss (define a loss function for each data point)

min
w ,b

∑
n

max(0, 1− yn[w⊤xn + b]) +
λ

2
∥w∥22
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Dual Formulation

Primal Max-Margin Formulation

min
w ,b,ξ

1

2
∥w∥22 + C

∑
n

ξn

s.t. yn[w⊤xn + b] ≥ 1− ξn, ∀ n

ξn ≥ 0, ∀ n

Dual Formulation

max
α

∑
n

αn −
1

2

∑
m,n

ymynαmαnx⊤
mxn

s.t. 0 ≤ αn ≤ C , ∀ n∑
n

αnyn = 0
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Kernel SVM

Select a kernel. In general, you don’t need to concretely define ϕ(x) and

can just use one of the popular kernel functions (polynomial kernel or

radial kernel).

Training

max
α

∑
n

αn −
1

2

∑
m,n

ymynαmαnk(xm, xm)

s.t. 0 ≤ αn ≤ C , ∀ n∑
n

αnyn = 0

Prediction

h(x) = sign(
∑
n

ynαnk(xn, x) + b)
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Advantages of SVM

We have now seen why SVM:

1. Is less sensitive to outliers.

2. Maximizes distance of training data from the boundary.

3. Only requires a subset of the training points.

4. Generalizes well to many nonlinear models.

5. Scales better with high-dimensional data.
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Summary

You should know:

• Max-margin formulation for separable and non-separable SVMs.

• Definition and importance of support vectors.

• Hinge loss formulation of SVMs.

• Equivalence of the max-margin and hinge loss formulations.

• Complementary slackness and strong duality in SVM.

• Dual vs Primal SVM.

• Kernel SVMs and the Kernel Trick.
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