
1
1
1

1

Leveraging Wasm
Instrumentation

arjunr2@andrew.cmu.edu, tianshu2@andrew.cmu.edu

Arjun Ramesh & Tianshu Huang

WebAssembly
Research Center

mailto:arjunr2@andrew.cmu.edu
mailto:tianshu2@andrew.cmu.edu

2
2
2

2

Why Wasm as an instrumentation target?

3
3
3

3

Why Wasm as an instrumentation target?

Source Code LLVM IR Binary Wasm

Simple Representation No Mostly No Yes

Cross-platform Yes Almost1 No Yes

Compiler-agnostic Yes LLVM2 No Yes

Language-agnostic No Mostly Yes Yes

Doesn’t require source code No Yes Yes Yes

Easy to bringup Yes Yes Yes Eh
1LLVM IR carries some platform-specific information such as native integer sizes
2you can use any compiler as long as it’s LLVM

4
4
4

4

Wasm really is cross platform!

Contact us if you want access!

5
5
5

5

Wasm instrumentation for
Data Race Debugging

Arjun Ramesh

6
6
6

6

Background: Data-Race Conditions

● Shared resource
● Concurrent

access from
multiple execution
contexts

● At least one write
● Inappropriate

synchronization

7
7
7

7

Background: Data-Race Conditions

thread #2

thread #1

8
8
8

8

Background: Data-Race Detection Algorithms

● Static Detection: Source code or bytecode analysis

● Dynamic Detection:

○ Lockset Analysis: Adhere to locking discipline

○ Happens-before analysis: Monitor sync primitives

○ Trapped-delay injection: Catch data-races red-handed

Inflexible for
deployment

Lack of
platform
coverage

9
9
9

9

Solution: Wasm for Data-Race Detection

● Language-agnostic

● Heterogeneous
bug-finding

● Distributed, scalable
debugging infrastructure

● Ease of adoption across
domains (e.g. real-time)

10
10
10

10

Tradeoff overhead for
scalability

Why vary instrumentation density?

Baseline: 1 run of 100%
instrumentation density

Homogenous Testbed:
Intel NUC 11, core i7

More violations than baseline

Less violations than baseline

Equal violations with baseline

but…

11
11
11

11

Rare bugs require very specific conditions

Unique
Violation
Pairs

lfq

*500 runs performed
for each
instrumentation
density (homogeneous)

thread_lock
Unique
Violation
Pairs

12
12
12

12

Heterogeneous dynamic analysis infrastructure

Platform Fuzzing = More Bugs? Low overhead, intelligent fuzzing

13
13
13

13

Intermission: WebAssembly
Performance Analysis

Tianshu Huang

14
14
14

14

Dataset

15
15
15

15

Method: Matrix Factorization (with Side Information)

1. Bytecode Features

2. Log-Residual Objective

3. “Two Tower” Model

4. Interference Term

16
16
16

16

● Geometric Averaging
= Log Arithmetic
Averaging

● Residual Objective
= Normalize for
scalar “speed” /
“difficulty” first

Log-Residual Objective

17
17
17

17

It works

Pitot vs Baselines:

(2.6%)

18
18
18

18

Characterizing Platforms*

*TSNE projection into 2 dimensions of the learned embeddings

19
19
19

19

Wasm instrumentation for
Runtime Analysis

Tianshu Huang

20
20
20

20

the real world is
more than just
benchmarks?

always has been

PolyBench/C

The Big Problem: Data Dependence

21
21
21

21

Motivation: Code Coverage Instrumentation

The problem:
● compute can vary greatly with

inputs
● can’t understand the input data

Our solution:
● code frequency = input data in

all the ways that matter

func(a, b) {
 for(i = 1..a)
 // computation A
 for(i = 1..f(b))
 // computation B

 // computation C
 return something;
}

Input 1 Input 2 Input 3

22
22
22

22

Our Approach: Code Frequency via Loop Counts

● Instrument loops
● Remove highly correlated loops

(loop $l1 …)
(loop $l2 …)
(loop $l3 …)
(loop $l4 …)
// …

(loop $l1 …)
(loop $l2 …)
(loop $l3 …)
(loop $l4 …)
// …

i

(loop $l1 …)
(loop $l2 …)
(loop $l3 …)
(loop $l4 …)
// …

i’

Wasm Module
Fully
Instrumented

Instrumented
Subset

Example
Inputs

Deploy to
Platforms

Runtime
Profiling
(loop $l1 …)
(loop $l2 …)
(loop $l3 …)
(loop $l4 …)
…

T=?

● More looping = more overhead
⟹ remove in decreasing order of #
loops

23
23
23

23

Results: Overhead (some rough numbers…)

Opcode
counting
overhead:
Python: 83%
Kissat: 174%

24
24
24

24

Results: Prediction Accuracy

● Can remove instrumentation with
correlation >0.95

● Better than black box baselines
● Almost as good as a full opcode

count

25
25
25

25

Conclusion
a wasm binary data race

debugging
runtime analysis

…Correspondence to:
Arjun Ramesh
<arjunr2@andrew.cmu.edu>

Tianshu Huang
<tianshu2@andrew.cmu.edu>

mailto:arjunr2@andrew.cmu.edu
mailto:tianshu2@andrew.cmu.edu

