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Why Wasm as an instrumentation target?
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Why Wasm as an instrumentation target?

Source Code LLVM IR Binary Wasm

Simple Representation No Mostly No Yes

Cross-platform Yes Almost1 No Yes

Compiler-agnostic Yes LLVM2 No Yes

Language-agnostic No Mostly Yes Yes

Doesn’t require source code No Yes Yes Yes

Easy to bringup Yes Yes Yes Eh
1LLVM IR carries some platform-specific information such as native integer sizes
2you can use any compiler as long as it’s LLVM
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Wasm really is cross platform!

Contact us if you want access!
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Wasm instrumentation for
Data Race Debugging

Arjun Ramesh
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Background: Data-Race Conditions

● Shared resource
● Concurrent 

access from 
multiple execution 
contexts

● At least one write
● Inappropriate 

synchronization
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Background: Data-Race Conditions

thread #2

thread #1
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Background: Data-Race Detection Algorithms

● Static Detection: Source code or bytecode analysis

● Dynamic Detection:

○ Lockset Analysis: Adhere to locking discipline

○ Happens-before analysis: Monitor sync primitives

○ Trapped-delay injection: Catch data-races red-handed 

Inflexible for 
deployment

Lack of 
platform 
coverage
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Solution: Wasm for Data-Race Detection

● Language-agnostic

● Heterogeneous 
bug-finding

● Distributed, scalable 
debugging infrastructure

● Ease of adoption across 
domains (e.g. real-time)
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Tradeoff overhead for 
scalability

Why vary instrumentation density?

Baseline: 1 run of 100% 
instrumentation density 

Homogenous Testbed:
Intel NUC 11, core i7

More violations than baseline

Less violations than baseline

Equal violations with baseline

but…
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Rare bugs require very specific conditions

Unique 
Violation 
Pairs

lfq

*500 runs performed 
for each 
instrumentation 
density (homogeneous)

thread_lock
Unique 
Violation 
Pairs
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Heterogeneous dynamic analysis infrastructure

Platform Fuzzing = More Bugs? Low overhead, intelligent fuzzing
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Intermission: WebAssembly 
Performance Analysis

Tianshu Huang
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Dataset
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Method: Matrix Factorization (with Side Information)

1. Bytecode Features

2. Log-Residual Objective

3. “Two Tower” Model

4. Interference Term



16
16
16

16

● Geometric Averaging
= Log Arithmetic 
Averaging

● Residual Objective
= Normalize for 
scalar “speed” / 
“difficulty” first

Log-Residual Objective
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It works

Pitot vs Baselines:

(2.6%)
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Characterizing Platforms*

*TSNE projection into 2 dimensions of the learned embeddings
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Wasm instrumentation for
Runtime Analysis

Tianshu Huang
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the real world is 
more than just 
benchmarks?

always has been

PolyBench/C

The Big Problem: Data Dependence
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Motivation: Code Coverage Instrumentation

The problem:
● compute can vary greatly with 

inputs
● can’t understand the input data

Our solution:
● code frequency = input data in 

all the ways that matter

func(a, b) {
    for(i = 1..a)
        // computation A
    for(i = 1..f(b))
        // computation B
    
    // computation C
    return something;
}

Input 1 Input 2 Input 3
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Our Approach: Code Frequency via Loop Counts

● Instrument loops
● Remove highly correlated loops

(loop $l1 …)
(loop $l2 …)
(loop $l3 …)
(loop $l4 …)
// …

(loop $l1 …)
(loop $l2 …)
(loop $l3 …)
(loop $l4 …)
// …

i

(loop $l1 …)
(loop $l2 …)
(loop $l3 …)
(loop $l4 …)
// …

i’

Wasm Module
Fully 
Instrumented

Instrumented 
Subset

Example 
Inputs

Deploy to 
Platforms

Runtime 
Profiling
(loop $l1 …)
(loop $l2 …)
(loop $l3 …)
(loop $l4 …)
…

T=?

● More looping = more overhead
⟹ remove in decreasing order of # 
loops
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Results: Overhead (some rough numbers…)

Opcode 
counting 
overhead:
Python: 83%
Kissat: 174%



24
24
24

24

Results: Prediction Accuracy

● Can remove instrumentation with 
correlation >0.95 

● Better than black box baselines
● Almost as good as a full opcode 

count
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Conclusion
a wasm binary data race 

debugging
runtime analysis

…Correspondence to:
Arjun Ramesh 
<arjunr2@andrew.cmu.edu>

Tianshu Huang 
<tianshu2@andrew.cmu.edu>
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